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ABSTRACT

We present FleetRec, a high-performance and scalable recommen-
dation inference system within tight latency constraints. FleetRec
takes advantage of heterogeneous hardware including GPUs and
the latest FPGAs equipped with high-bandwidth memory. By disag-
gregating computation and memory to different types of hardware
and bridging their connections by high-speed network, FleetRec
gains the best of both worlds, and can naturally scale out by adding
nodes to the cluster. Experiments on three production models up
to 114 GB show that FleetRec outperforms optimized CPU baseline
by more than one order of magnitude in terms of throughput while
achieving significantly lower latency.

CCS CONCEPTS

« Information systems — Social recommendation; « Hard-
ware — Reconfigurable logic and FPGAs; « Computer sys-
tems organization — Distributed architectures.
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1 INTRODUCTION

DNN-based recommendation inference comprises a huge portion
of the workload in data centers. Thus, it is crucial to optimize its
performance to serve these models efficiently. Such optimizations
can lead to instant economic benefits through (a) higher recom-
mendation quality since more candidate items can be scored in the
same time frame; and (b) reduced energy consumption as a result of
the improved inference efficiency. Figure 1 shows the architecture
of a classical deep recommendation model for Click-Through Rate
(CTR) prediction. The input feature vector consists of dense features
(e.g., age) and sparse features (e.g., advertisement category). The
model translates each sparse feature into a dense embedding vector
by looking it up in an embedding table. These vectors are then
combined with dense features and fed to several fully-connected
(FC) layers before the model outputs the predicted CTR. Although
there are alternative architecture designs [1, 5, 6, 17, 18], most rec-
ommendation systems are built around two major building blocks,
i.e., the embedding tables and the DNN classifier, thus sharing the
inference challenges we describe below.

Key Challenges. Due to the embedding table architecture and
the need for real-time recommendations, three challenges are faced
to build efficient inference systems for recommendations. First,
the embedding table architecture becomes a performance bottle-
neck. Due to the tiny size of each embedding vector (usually 4 to
64 dimensions) and the large number of embedding tables (tens
to hundreds), the embedding table lookup operations are costly
because they induce massive random DRAM accesses, leading to
low memory bandwidth utilization and significantly downgraded
performance. Even worse, these lookup operations result in extra
overhead if one resorts to state-of-the-art machine learning frame-
works such as TensorFlow and PyTorch. For example, even in an
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Figure 1: The representative deep recommendation model
that we target to accelerate.

inference-oriented framework such as TensorFlow Serving, there are
tens of types of operators involved in the embedding layer and each
operator is invoked multiple times. The many operator invocations
significantly degrade performance, especially as small batches are
often required for real-time inference. Second, the scale of recom-
mendation models can reach over 100 GB since some embedding
tables are huge, e.g., account information encodings. Such sizes
exclude the option of using hardware accelerators, e.g., FPGAs and
GPUs, as the inference engine because of the lack of memory on
the device. Third, the latency requirement is stringent (usually tens
of milliseconds). Large batch sizes usually lead to better through-
put for CPUs and GPUs because of the better utilization of the
single instruction multiple data (SIMD) architecture and the amor-
tization of function call overheads. In real-time recommendation
systems, the Performance Metric is throughput under service-level
agreement (SLA) constraints, limiting the batch sizes usable in prac-
tice. Although huge batch sizes are beneficial for CPUs and GPUs
to improve throughput (inferences per second), recommendation
systems require small batches due to the latency constraints.
Although much effort has been invested into accelerating deep
recommendation models [4, 9, 10, 13, 14], they all fail to solve some
of the challenges above, making them suitable only for a subset
of use cases. For instance, Gupta et al. [4] suggests GPUs could be
useful in recommendation for large batches compared to regular
CPU-based engines, but the embedding performance bottleneck
remains and GPUs cannot serve large models for the lack of memory
capacity. Similarly, hybrid CPU-GPU and CPU-FPGA designs are
evaluated but without solving the memory bottleneck Hwang et al.
[9]. Jiang et al. [10] resort to the high-bandwidth memory (HBM)
available on FPGAs for high-performance embedding lookups, but
its applicability is heavily limited to small models because of the 8
GB of HBM available on the board. Kwon et al. [14] and Ke et al.
[13] propose to redesign DRAM at the micro-architectural level;
however, it takes years to put such new DRAM chips in production
even if they are eventually adopted, making the solution interesting
from a research perspective but not from a practical stand point.
Our Goal. We target to build an end-to-end high-performance
recommendation inference system that can (a) achieve high through-
put (inferences per second) under SLA (latency) constraints of tens

of milliseconds, and (b) adapt for various models with minimal us-
age of hardware devices (the model sizes can range from hundreds
of MB to hundreds of GB, and the workload characteristic can be
embedding-lookup-intensive or computation-intensive).

Our Approach. Based on the careful analysis of three production-
scale models, we design and implement FleetRec, a high-performance
and configurable heterogeneous computing cluster for recommen-
dation inference. On the embedding table lookup side, we resort
to (a) FPGAs equipped with high-bandwidth memory (HBM) to
enable highly concurrent lookup operations and (b) CPU servers
with sufficient DRAM capacity for a few large tables (e.g., tens of
GB). On the computation side, we use GPUs exclusively for DNN
computation to avoid the irregular memory lookup operations that
degrade the SIMD performance. These hardware resources (GPUs,
FPGAs, and CPU servers) are regarded as end devices connected
through a high-speed network (100 Gbps per link), so that one can
configure the node type and quantity to support various size scales
(up to hundreds of Gigabytes), number of embedding tables, and
computation density.

Key Results. We evaluate FleetRec on three production mod-
els from Alibaba covering size scales from 1 GB to over 100 GB.
FleetRec achieves 15.5~49.0x speedup in terms of throughput over
the CPU-baseline and 7.4~16.1X speedup over FPGA accelerators.
Besides, FleetRec lowers the inference latency by 21.0%~92.5% per-
cent compared to CPUs. As a result, FleetRec is an ideal candidate
for real-time inference — it outperforms a CPU based system by
41.8~387.2x given a 10 ms latency bound. Besides the three industry
models, one can also generalize FleetRec to any recommendation
models: the performance interpretability of FleetRec enables to esti-
mate the performance of any model without the need to implement
the hardware. With this, the contributions of the paper include:

e We design and implement FleetRec, a high-performance
and configurable recommendation engine supporting a wide
range of model size scales and architectures. The design
is based on our observation of the characteristics of three
production models used by Alibaba.

e We implement an efficient dataflow architecture on an FPGA
for high-throughput embedding table lookups. We also inte-
grate a 100 Gbps TCP/IP stack into Xilinx’s Vitis development
platform, enabling FPGAs to serve as smart disaggregated
memory for recommendations. We further develop an opti-
mized software infrastructure on the GPU server, allowing a
seamless and high-performance coordination between the
memory and computation nodes.

e We test FleetRec on three production models. Compared to
an optimized CPU baseline, FleetRec shows more than one
order of magnitude speedup in terms of throughput while
significantly lowering latency — a significant advantage in
real-time recommendations.

2 BACKGROUND & MOTIVATION

We describe a typical deep recommendation model and point out
the challenges to design a high-performance inference system for
it, namely the embedding-vector-lookup bottleneck, the latency
constraints, and the model size scale. Then existing solutions and
their shortcomings are discussed.
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Figure 2: Latency breakdown of three production recom-
mendation models ranging from 1 GB to over 100 GB.

2.1 Representative Recommendation Models

Figure 1 outlines a representative deep recommendation model de-
ployed in Alibaba. It is responsible for predicting click-through-rates
(CTR), i.e., how likely it is that the user will click on a given product.
The model takes a set of sparse and dense features as input. For ex-
ample, account IDs and region information are encoded as one-hot
vector (sparse feature), while age is among the dense features. The
prediction process is as follows. First, the sparse features are con-
verted to a set of indexes to lookup vectors on a set of embedding
tables. For each inference task, one or several vectors are retrieved
from each table [5]. The embedding vectors are then concatenated
with the dense features. Finally, the concatenated vectors are used
as input to the top fully-connected (FC) layers for CTR prediction
to determine the products with the highest CTRs.

This neural network architecture is representative of models used
in industry. Although concrete designs vary, most of them are built
around the embedding table lookup and the DNN computation, thus
sharing the same performance challenges (Section 2.2) observed in
the Alibaba use case. For example, Facebook introduces additional
fully-connected layers to process dense input features: the dense
features are fed into the bottom FC layers, and the output features
are concatenated with embedding vectors [5]. Google adds an linear
model alongside the deep model [1].

2.2 Inference Challenges

Challenge 1: embedding table lookup. The lookup of the em-
bedding tables is a unique bottleneck in recommendation inference
compared to regular DNN workloads. Figure 2 shows the cost of
embedding layers during inference on three production models
ranging from 1 GB to over 100 GB.

These lookup operations cause performance issues for two rea-
sons. First, looking up embedding vectors on many tables causes
random DRAM accesses, leading to significantly under-utilized
memory bandwidth and low lookup performance. Figure 3 shows
a toy example of looking up two embedding tables. The pattern
of looking up vectors from different tables is unfriendly to the un-
derlying hardware because jumping around virtual memory space
requires the row buffer of the DRAM bank to be charged and dis-
charges repetitively. Since each embedding vector is short (usually
containing between 4 and 64 elements), the DRAM bandwidth uti-
lization is very low, as shown in the lower half of Figure 3. Second,
embedding lookups result in operator-call overhead if one resorts
to machine learning frameworks such as TensorFlow and PyTorch.
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Figure 3: Embedding table lookup operations lead to under-
utilized DRAM bandwidth, causing the memory bottleneck.

According to our observations on TensorFlow Serving which is op-
timized for inference, the embedding layer involves 37 types of
operators (e.g., concatenation and slice) and these operators are in-
voked multiple times during inference, resulting in a large overhead
especially for small batches. Unfortunately, small batch sizes are
usually required in CPU-based recommendation engines to meet
the latency requirements of tens of milliseconds.

Challenge 2: serving models over 100 GBs. Embedding ta-
bles usually contribute to the majority the memory requirements
in recommendation systems. At industrial scale, they can contain
up to hundreds of millions of entries, consuming tens or even hun-
dreds of gigabytes of memory. For example, the largest model in
our experiments contains 377 embedding tables and requires 114
GB of memory. The single largest table contains 2 million entries
of 64-dimensional encoded vectors: over 50 GB for a single table.
Such sizes pose a challenge for specialized hardware. For example,
the DRAM capacity of GPUs and FPGAs is around a few tens of
GB, thus unable to serve large recommendation models.

Challenge 3: optimizing throughput under SLA constraints.
Large batch sizes usually lead to better throughput for CPUs and
GPUs because of the better utilization of the SIMD architecture
and the amortization of function call overheads. In real-time rec-
ommendation systems, the Performance Metric is throughput under
SLA constraints, limiting the batch sizes usable in practice.

2.3 Existing Approaches & Limitations

Although several solutions have been proposed to serve recom-
mendation models, they all fail to meet some of the challenges just
described. This section introduces existing solutions, summarises
their pros and cons, and points to the need for a novel system
capable of meeting all outstanding challenges.

CPU-based. CPU-based recommendation inference is the go-to
choice in industry [4, 5], because (a) deployment on CPU servers
requires no extra investment on novel hardware; (b) the DRAM



Table 1: FleetRec compared with existing solutions.

Solution Embedding Lookups DNN Computation Supported Model Size Throughput under SLA Inference Latency
CPU [5, 8, 14] Slow Slow Large Low Medium
GPU [4, 8,9] Slow Fast Medium~Large Low~Medium Medium~High
CPU-FPGA [9] Slow Medium Large Low~Medium Very Low
FPGA with HBM [10] Fast Medium Medium Medium Very Low
FleetRec (Ours) Fast Fast Large and Scalable High Low
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Figure 4: System overview of FleetRec. It is built upon heterogeneous computing clusters consists of CPUs, GPUs, and FPGAs
without modifying the server setups. FPGAs and CPU servers are embedding table lookups engines while GPUs provide DNN
computation firepower. These hardware resources can be bridged flexibly by a high-speed network to adapt various recom-
mendation workloads (model A~D) while leaving the remaining hardware resources for non-recommendation tasks.

capacity installed on CPU servers is typically enough to serve large
recommendation models; and (c) inference latency on small batches
is generally lower than in GPUs. Though widely deployed, CPUs are
not known for their DNN inference performance compared to those
of GPUs, and the memory bottleneck caused by the embedding
lookups worsens the situation.

GPU-based. Two deployments have been explored on GPU. Leav-
ing both the embedding lookup and the DNN computation to the
GPU is one option [4, 8], but it cannot serve large models because
of the limited GPU DRAM capacity. Besides, although GPUs use
high memory bandwidth (HBM), their SIMD architecture is not
suitable for irregular operations such as individual table lookups,
losing the bandwidth advantage of HBM. Another option is to do
the embedding lookups on the CPU, and then transfer the concate-
nated vector to the GPU through the PCle bus [9]. In general, the
speedup of GPUs improves the DNN computation but the memory
bottleneck remains. In addition, GPUs can deliver high throughput
for large batches but do less than optimally for the small batches
needed to meet the latency constraints.

FPGA-based. FPGAs can be viewed as application-specific inte-
grated circuits once they are programmed, thus are suitable for
latency-sensitive applications such as recommendation. Hwang
et al. [9] is an FPGA solution in which the FPGA accesses the
CPU-side DRAM for embedding lookups and performs the DNN
inference on the FPGA. This solution provides enough memory
capacity but still suffers from the embedding bottleneck and the
speedup is mainly obtained from the fast DNN computation. Jiang
et al. [10] provides an alternative solution taking advantage of the
High-Bandwidth Memory (HBM) available on the latest FPGA mod-
els, thus providing the highest embedding lookup performance

among existing solutions. However, it is restricted to small model
sizes since the available memory capacity is only 8 GB of HBM plus
32 GB of DDR4 DRAM.

Our Goal. As summarized in Table 1, all existing solutions have
their limitations, thus are only suitable for a subset of inference
scenarios. In this paper, we aim to obtain a single solution that can
(1) minimizes the memory bottleneck caused by embedding table
lookups; (2) achieves high end-to-end inference throughput under
SLA constraints; and (3) supports recommendation models larger
than 100 GB.

3 FLEETREC

Key Advantages. We introduce FleetRec, a high-performance and
configurable heterogeneous computing cluster for recommendation
inference. FleetRec provides several advantages over current solu-
tions. First, it combines the strengths of heterogeneous hardware
(FPGAs and GPUs) while avoiding the weaknesses of each platform.
Second, it scales out to large models by simply plugging in more
memory nodes (FPGAs and CPU servers). Third, by configuring
the ratio of the two types of nodes (memory and computation), the
cluster is adaptable to various workloads, regardles of whether the
models are computation-intensive or table-lookup-intensive. In the
following, we present the key insights of FleetRec’s design abstract-
ing away the low level details of the hardware implementation.

3.1 System Overview

System Components. Figure 4 shows the architecture of FleetRec,
built on a cluster of heterogeneous hardware. The embedding vector
lookups are performed on FPGAs equipped with high-bandwidth
memory and CPU servers with sufficient DRAM, while the DNN



computation happens in the host servers equipping GPUs. FleetRec
regards each accelerator as an individual end device connected
by 100 Gbps TCP/IP network. FleetRec can be adapted to a wide
range of workloads by using different configurations that vary the
number and interconnection topology between CPUs, GPUs, and
FPGAs (Figure 4).

Recommendation Query Processing Flow. The inference starts
by retrieving the embedding vectors (the sparse features) through
lookup indexes on the embedding tables residing in the memory
nodes (FPGAs and, when needed, CPU servers). Each memory node
completes the table lookup and concatenates the retrieved vectors
before sending them to the GPU server. The GPU server concate-
nates all the received embedding vectors with dense features and
runs them by the DNN in a batch.

The key design philosophy of FleetRec is two-fold:

First, FleetRec takes advantage of the strengths of differ-
ent types of hardware. The latest FPGA equipped with HBM
enables highly concurrent embedding table lookups (a few tens of
lookups in parallel), yet it has limited memory capacity (8 GB HBM
+ 32 GB DDR) and insufficient DNN computation performance.
According to our experiments implementing FPGA accelerators
for recommendation inference, the DNN computation module is
one order of magnitude slower than the HBM-fueled embedding
lookup module [10]. GPUs are great for pure computation but suf-
fer from irregular memory access patterns such as the embedding
table lookups. FleetRec combines the best of both worlds: FPGAs
implement the embedding table lookups while GPUs run the DNN
computation. FleetRec can also include CPU servers as memory
nodes to provide sufficient DRAM capacity for a few large tables:
the largest embedding table in our models is more than 50 GB.
Keeping such tables in a CPU server is a more efficient choice than
FPGAs.

Second, FleetRec disaggregates computation and memory;,
leading to high scalability and flexibility. Instead of plugging
a certain number of FPGAs and GPUs to the same host server, Flee-
tRec treats these accelerators as individual end devices connected
by a network, enabling flexible combinations between computation
and memory resources. To scale out and support large recommen-
dation models, more FPGAs or CPU nodes can be added to the
cluster. To adapt to different models, the resources allocated to
computation or embedding lookups can be independently adjusted
to balance performance between the two components. For DNN-
computation-intensive model architectures, installing more GPUs
on the computation node matters more than having multiple mem-
ory nodes. For models with hundreds of embedding tables, pairing
several FPGA nodes with one GPU can be a more reasonable choice.

3.2 The FPGA as Smart Disaggregated Memory

We use the latest FPGAs equipped with hybrid memory system as
smart disaggregated memory to enable highly parallel embedding
lookups. The Xilinx Alveo U280 FPGA cards used in the experi-
ments contain three types of memory: high-bandwidth memory
(HBM), DDR4 DRAM, and on-chip memory (BRAM and URAM).
The HBM system on the U280 offers improved concurrency (32 inde-
pendent memory banks) and bandwidth (up to 425 GB/s) compared
to conventional DRAMs [11, 15, 16]. Thus, embedding tables can be
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Figure 5: The hardware design of a FleetRec FPGA.

distributed across these banks so that each bank only contains one
or a few tables, and up to 32 tables can be looked up in parallel!.
The 2 DDR4 DRAM channels on the board provide higher memory
volume (32 GB DDR vs 8 GB HBM), although it only supports 2
parallel lookup operations at a time. Besides DRAM (HBM and
DDR) for which the memory access latency is around a couple of
hundreds of nanoseconds, the U280 card also contains tens of MB
of on-chip SRAM, with low-latency access comparable to that of a
CPU cache.

To maximize the embedding lookup performance, a FleetRec
FPGA allocates the tables to its hybrid memory system in the fol-
lowing manner. There are no embedding data exchange between
the memory hierarchy because the model is known at the system
development stage. First, it stores as much small tables as possible
in SRAM since that allows low-latency and high-concurrency vec-
tor retrieval. Second, it distributes the rest tables in HBM and DDR
banks. The largest tables are stored in DDR banks because of its
higher capacity (16 GB per DDR bank compared to 256 MB of an
HBM bank). Because the random access latency to HBM and DDR
are close (200~300 ns), FleetRec FPGA ties the number of embed-
ding tables stored in each bank to balance the workload. During the
embedding lookup process, vectors stored in different banks can
be read in parallel and the performance is decided by the rounds
of DRAM access. For example, a model contains 90 tables: 30 of
them are stored on-chip while the rest 60 are evenly distributed to
HBM and DDR banks (30 banks available in total). Then the FPGA
will concurrently gather all on-chip vectors and issue 2 rounds of
parallel DRAM accesses to retrieve all embedding vectors.

Figure 5 illustrates the hardware design of an FPGA node in Flee-
tRec: it takes sparse feature (lookup indexes) as input and outputs
the concatenated embedding vectors through the network to the
computation node. FleetRec uses an open-source 100 Gbps network
stack [7] integrated into the Vitis FPGA development platform [12],
so that our integrated network stack supports the Xilinx U280 FPGA
cards as well as High-Level Synthesis, an FPGA development flow
allowing programming hardware in C/C++. We then implement
the components enabling the FPGA to serve as smart disaggregated
memory for recommendation, including a table lookup controller
to handle memory accesses and a gather unit to concatenate all the
retrieved vectors.

!We use most (28 of 32) HBM banks to hold embedding table in the experiments.
Another 2 HBM channels serve as network cache, while the rest 2 channels are not
used because they overlap with the PCle region of the card and using them can lead to
routing issues and degraded performance [2].
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3.3 The GPU as DNN Engine

Figure 6 shows the working flow on the FleetRec GPU server. The
inference starts by receiving the concatenated input features sent
by the memory nodes. The batched input features are stored into
page-locked memory in the CPU side DRAM (GPUs do not have
direct network access). The GPU reads a batch of input features,
runs the DNN computation, and returns the predicted CTR. We
optimize performance to maximize throughput as follows:

GPU operator scheduling. To maximize GPU utilization, we use
multiple CUDA streams for inference. As shown in the lower half
of Figure 7, employing multiple streams (a) enables operator-level
concurrency and (b) overlaps computation (3 layers of DNN in the
form of general matrix-matrix multiplication) and communication
between host and device (H2D and D2H). In this case, the GPU
throughput is maximized with a marginal latency overhead.

From network to main memory. We use multiple threads on the
CPU side for network packet processing, memory management,
and issuing tasks to the GPU. As discussed above, multiple CUDA
streams are launched to maximize inference throughput and we
utilize individual threads on the host CPU to handle each task
stream. The jobs of a thread include: (a) establishing TCP/IP con-
nections to memory nodes, (b) receiving the network packets and
storing the input feature into main memory, and (c) issuing the GPU
commands including data transfer and computation. Page-locked
memory serves as input feature buffer in main memory, so that
direct memory access (DMA) between the CPU main memory and
the GPU is possible (with DMA, a GPU can access the CPU side
memory without involving CPU, thereby increasing throughput

Table 2: Specification of the three production models.

Scale Table Num  Feature Len Hidden-Layer Size

Small 47 352 (1024, 512, 256) 1.3 GB
Medium 98 876 (1024, 512,256)  15.1GB
Large 377 3968 (2048, 512,256)  114.4 GB

and reducing latency). After each batch of DNN computations, the
GPU writes the predicted CTRs to the host memory.

4 EVALUATION

Results Overview. We first evaluate FleetRec on three produc-
tion models from Alibaba. FleetRec shows significant throughput
improvement over both the CPU and FPGA baselines while also
significantly reducing latency. Due to the improved throughput
and reduced latency, FleetRec is especially good at real-time in-
ference under strict SLA constraints — it achieves two orders of
magnitude speedup over the CPU based system given a 10 ms SLA.
We then show how to generalize and configure FleetRec for other
recommendation models by estimating the speedup of FleetRec
and balancing computation and lookup performance to maximize
performance while minimizing hardware usage.

4.1 Model Specification

We experiment with three deep recommendation models of different
sizes from Alibaba. All three models involve heavy embedding
vector lookups, thus showing different workload characteristics
compared with non-recommendation DNN architectures. Table 2
shows the parameters of the models. These models contain 47, 98,
and 377 embedding tables respectively, and each table is looked
up once during inference. For example, during each inference, the
largest model gathers the embedding vectors retrieved from 377
tables into a 3968-dimensional dense vector, and feeds it to three
fully-connected layers. Though not shown in the table, the single
largest embedding table contains 200M entries consuming 51.2 GB
memory footprint.

4.2 Experimental Setup

CPU baseline. We run the models on two types of CPU servers
on Amazon’s AWS. The small and medium models are tested on
a server with Intel Xeon E5-2686 v4 CPU @2.30GHz (16 vCPU,
Broadwell, SIMD operations, i.e., AVX2 FMA, supported) and 128
GB DRAM (8 channels). A more powerful server with Intel Xeon
Platinum 8259CL CPU @ 2.50GHz (32 vCPU, Cascade Lake, SIMD
supported) and 256 GB DRAM is used for the larger model. For the
ML framework, we use TensorFlow Serving which is optimized for
model inference.

FPGA baseline. Besides the CPU baseline, we also compare Flee-
tRec with a set of FPGA recommendation accelerators (single FPGA
implementation) optimized for each individual model. The FPGA ac-
celerator is responsible for not only the embedding lookups but also
the DNN computation. The computation module is implemented by
constructing several general matrix-matrix multiplication (GEMM)
blocks (each standing for one layer) connected by FIFOs. Each
GEMM block is further composed by a set of processing elements
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Figure 8: FleetRec significantly outperforms the CPU and FPGA baselines in terms of throughput.
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Figure 9: FleetRec achieves much lower latency compared to CPU engines given the same batch sizes.

(PEs) which is the basic unit to perform parallelized vector multi-
plications. Such modularized design maximizes hardware resource
usage and avoids the performance degradation caused by place-
ment and routing issues [3]. Since FPGAs are naturally good at
fixed-point computation rather than floating point, we perform
quantization on the models and test the performance under two
level of precision, i.e., 16-bit and 32-bit fixed-point numbers. Both
the CPU baseline and FleetRec are tested with 32-bit floating point.
Due to the memory capacity limitations in the FPGA, the FPGA
accelerator experiments only include the small and medium models.

FleetRec setups. Similar to the CPU baseline, we use two FleetRec
configurations. One FPGA plus a GPU are enough to serve the small
and medium models. The larger models contains hundreds of tables
consuming 114 GB memory, thus we upgrade the disaggregated
memory to 2 FPGAs and 1 CPU server. We use Xilinx Alveo U280
FPGAs equipped with 8GB of HBM2 DRAM (32 channels) and 32 GB
of DDR4 DRAM (2 channels). We implement the FPGA hardware
logic using Vitis HLS and set the clock frequency to 180 MHz. For
the computation node, we use a Titan RTX GPU containing 4608
CUDA cores. The DNN computation flow is constructed by the
cuBLAS library. We test 1~16 CUDA streams for all three models to
maximize the GPU performance and presents the results with the
highest throughput. The GPU server uses a Mellanox ConnectX-
5 NIC with a 100 Gbps Ethernet connection. The FPGAs use an
open-source 100 Gbps TCP/IP network kernel [7].

4.3 End-to-End Inference Performance

FleetRec shows more than one order of magnitude speedup
in terms of inference throughput over the CPU baseline. In
Figure 8, we compare the throughput of CPUs, FPGAs, and FleetRec
using batch sizes ranging from 32 to 1024 (larger batch sizes can

violate the SLA of 10 ms). The throughput of the CPU-baseline and
FleetRec increases with the batch size, while the throughput of the
FPGA accelerators remains constant because the dataflow architec-
ture used in the FPGA processes inference item by item instead of
in batches. According to the peak throughput on the three models,
FleetRec achieves 15.5~49.0% speedup over the CPU baseline, and
7.4~16.1X over the FPGAs. The significant speedup over FPGAs
justifies introducing heterogeneous hardware in the form of a GPU
in addition to the FPGAs. FleetRec exhibits even higher speedups
over CPUs due to both the fast DNN computation enabled by the
GPU and the highly concurrent embedding lookups provided by
FPGAs equipped with HBM. The speedups over CPUs on small
and medium models are more significant than in the large one,
because we use a more powerful CPU server (with twice as many
cores and memory channels as well as the latest micro-architecture
design) for large model inference, while only one GPU is deployed
in FleetRec across the three experiments.

FleetRec exhibits much lower latency compared to CPUs.
As shown in Figure 9, the latency reduction achieved by Fleet given
the same batch sizes ranges from 21.0 % to 92.5% with an average
of 76.6%. Note that FleetRec can perform single-millisecond-level
inference on small and medium models using medium batch sizes
(e.g., 256), while the CPU needs around 10 ms. Using a medium
batch size of 256 already allows FleetRec to achieve close-to-peak
throughput (around 85% of the peak performance), while for the
CPU only achieves around half of the throughput reached with
batch sizes of 1024. Though still better than the CPU baseline, the
latency of FleetRec on the large model is higher compared with the
medium and small ones, because (a) the network traffic to transfer
a batch of inputs of the large model is far heavier due to the feature
length as shown in Table 2; and (b) each thread on the GPU server



Table 3: Throughput under strict SLA requirements.

FleetRec shows huge advantage over CPU for real-time inference.

Small Model Medium Model Large Model
SLA (ms) 5 10 20 5 10 20 5 10 20
Throughput (inferences / sec)
CPU 7.30E+3 3.14E+4 5.96E+4 N/A 3.72E+3 1.64E+4 N/A 1.28E+4 2.85E+4
FPGA 3.05E+5 3.05E+5 3.05E+5 1.95E+5 1.95E+5 1.95E+5 N/A N/A N/A
FleetRec 2.92E+6 2.92E+6 2.92E+6 1.44E+6 1.44E+6 1.44E+6 5.07E+5 5.35E+5 5.80E+5
Speedup of FleetRec over
FPGA 9.57X 9.57X 9.57Xx 7.39%X 7.39%X 7.39% +0o0X +00X +00X
CPU 400.07x 92.97x 48.96x +00X 387.24x 87.92x +0o0X 41.76% 20.34x
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Figure 10: The performance of FleetRec can be estimated by taking the minimum of the lookup and computation module.
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Figure 11: The embedding lookup performance can be esti-
mated given the DRAM access rounds.

needs to maintain individual connections with several memory
nodes and receive data from them in a round-robin manner.

For real-time recommendations under strict SLA (latency)
constraints, the speedup of FleetRec is even more significant.
Achieving high throughput and guaranteeing low latency can be
contradictory on CPU-based inference engines, since throughput is
increased by employing large batches. Table 3 presents the through-
put of several systems under different SLAs by translating the data
presented in Figure 8 and 9. Given a latency constraint of 10 ms, Flee-
tRec can achieve 41.8~387.2x speedup in throughput, even more
significant than the 15.5~49.0x achieved when not considering the
latency constraint.

4.4 Generalizing and Configuring the System

FleetRec can be generalized and configured beyond the three
industry models: given any recommendation models, one can (a)
decide how to configure the system (number of GPUs, FPGAs, and
CPU memory nodes); and (b) estimate FleetRec’s performance, with-
out the need to implement the hardware at all. To prove this, we
first show that the performance of FleetRec can be estimated once

the performance of the computation and embedding lookup mod-
ules is known. We then present how to estimate the performance
of the two components without actually implementing them.

The performance of FleetRec can be estimated as shown in Fig-
ure 10. Once the performance of the computation and embedding
lookup modules is known, we can estimate the throughput of Flee-
tRec under different batch settings by taking the minimum through-
put of the two components. There is a tolerable performance gap
between FleetRec and the lower performance bound of the two
components, because FleetRec involves network while the perfor-
mance of the computation and embedding lookup modules is tested
without network.

The performance of both computation and embedding lookup
modules can be estimated easily without the need to implement
hardware. On the GPU side, one can resort to existing ML pro-
gramming frameworks, e.g., TensorFlow, PyTorch, or MXNex, and
remove the embedding layer to test only the DNN computation
performance on a GPU. On the FPGA side, the lookup performance
is decided by DRAM (HBM and DDR) access rounds and influenced
by embedding vector lengths. As shown in Figure 11, given the
same embedding vector length, the lookup latency is proportional
to the rounds of DRAM access. The lookup latency of different vec-
tor lengths are very close (within 40 ns per round): the embedding
vectors are short and cannot fully take advantage of the spatial
locality within the DRAM, thus these accesses are almost random,
and the FPGA only needs to pay a few more clock cycles to read a
longer vector. Note that the embedding lookup is issued item by
item no matter what the batch size is, thus the throughput is simply
the reciprocal of the latency shown in Figure 11. This predictability
allows us to estimate the embedding lookup performance given
a recommendation model without actually implementing it. For
example, given a model with 90 tables and 30 of them small enough
to be stored on-chip, we can allocate the rest 60 tables to DRAM (28



available HBM channels plus 2 DDR channels), and the FPGA can
finish the lookup process with 2 rounds of DRAM access as long as
the model size is within the capacity of the DRAM. This estimation
also works for multi-FPGA lookup modules. We first estimate the
performance of each individual nodes, and the lookup performance
is bound by the one with the lowest throughput.

Once the performance of computation and embedding lookups
is known, one can configure FleetRec in a way that maximizes
performance while minimizing resource usage by balancing the
performance of the two components. For example, one can couple
an FPGA node with several GPUs for computation-intensive models.
On the contrary, the design employing multiple FPGAs and a single
GPU could fit models with many embedding tables and a set of
light-weight DNN layers.

5 RELATED WORK

Hardware accelerators for recommendation inference. According to
Facebook, recommendation workloads can consume up to 79% of
total Al inference cycles in data centers [5], thus the research com-
munity has started to explore hardware-accelerated solutions. Kwon
etal. [14] proposed to reduce the memory bottleneck by redeisgning
the DRAM micro-architecture to support higher lookup concur-
rency. Ke et al. [13] extended this idea of near-memory-processing
by adding memory-side-caching for frequently-accessed entries.
Gupta et al. [4] developed a recommendation query scheduling
policy to dispatch the workload to CPUs or GPUs given the real-
time query arrival patterns. Hwang et al. [9] implemented an FPGA
accelerator for deep recommendation inference. Jiang et al. [10]
designed another FPGA acceletor by taking advantage of the HBM
system recently available on FPGA, and introducing data structure
solution, i.e., Cartesian products, to reduce the number of DRAM
accesses. Zhu et al. [19] extended this idea by using an FPGA clus-
ter to conquer the computation bottleneck, but it requires more
accelerators to achieve the same performance compared with our
work. FleetRec shows clear advantages over these solutions as sum-
marized in Table 1.

6 FUTURE PERSPECTIVES

To popularize FleetRec in a wide range of deployments, we expect
an end-to-end development flow from ML frameworks to hardware
to be very useful. Though showing attractive speedups, FleetRec
involves manually optimized hardware design for each individual
recommendation models. This requires seamless collaboration be-
tween an ML team and a hardware team. Fortunately, the hardware
logic of embedding table lookups follows a rather fixed pattern,
thus it is possible to prepare a set of hardware code templates, and
compile the look up logic to hardware using an automated code
generator. Once this can be achieved, we can integrate FleetRec to
existing ML frameworks such as TensorFlow and PyTorch, allowing
an end-to-end development experience for ML engineers, who can
then focus on the DNN architecture design and can deploy this
high-performance system with a single button.
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