Vector-Centric Machine Learning Systems:
A Cross-Stack Approach

Wengqi Jiang

June 2025

ETH:zurich m

Computing infrastructure drives Al advancement

2 p

ImageNet Classification with Deep Convolutional

Neural Networks
Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
GIGABYTE p University of Toronto University of Toronto University of Toronto

kriz@cs.utoronto.ca 1ilya@cs.utoronto.ca hinton@cs.utoronto.ca

AlLA'SVYDD

SNO009 awsLoe
faw/ — 335 oW v

IIIIIIIIIIIIII

2 x NVIDIA GTX 580 gaming GPUs

Each GPU: 3 GB memory,1.5 TFLOPs

Computing infrastructure drives Al advancement

2 x GTX 580 25,000 x NVIDIA A100
1.5 TOPs / chip 10 years > 1248 TOPs / chip
60M parameters > 1T parameters

103 per-chip performance x 104 chips = 107 improvement

3

Machine learning system efficiency matters!

According to figures from Taiwan-based market watcher TrendForce,

2025, adding up to about $298 billion.

https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://www.trendforce.com/presscenter/news/20250106-12433.html
https://www.trendforce.com/presscenter/news/20250106-12433.html
https://www.trendforce.com/presscenter/news/20250106-12433.html

Presentation Outline

Overview: ML system efficiency is beyond model acceleration
My research: cross-stack, vector-centric ML systems

RAGO: 1st systematic performance optimization for RAG
Efficiently serving diverse and evolving RAG algorithms

Chameleon: 15t heterogeneous accelerator system for RAG
Explore hardware specialization for vector search

Future work: next-generation machine learning systems
Spanning algorithms, databases, systems, and hardware

Retrieval-augmented generation (RAG)

Key idea: pair LLMs with retrievals from external databases

é o])
g2n User question:

Thomas invented
»! phonograph, motion
picture camera, ...

What are Thomas Edison's o\
most notable inventions? LLM 0)?7

Q x)
()
Vector database

\, These inventions, including the
texts g phonograph, the motion picture
S =) vectors camera, and the electric ...

J

4
£

Retrieval-augmented generation (RAG)

Key idea: pair LLMs with retrievals from external databases

&2 User question:

What are Thomas Edison's
most notable inventions?

/
4 \I
()

Vector database

o

texts

L vectors E)

\. J

2 Q

-

Retrieval = Vector Search

—-—

|10

Vector Database

>

s

Retrieval-augmented generation (RAG)

Key idea: pair LLMs with retrievals from external databases

&2 User guestion:

What are Thomas Edison's LI M &} > ng?oasr;nvhenr;eciion
most notable inventions? / P grapn,

\ picture camera, ...
N

4 N
Vector database — "/

\, These inventions, including the
texts g phonograph, the motion picture
S =) vectors camera, and the electric ...

J

Retrieval-augmented generation (RAG)

Key idea: pair LLMs with retrievals from external databases

Prompt = question + retrieved documents

é N

Thomas invented
»! phonograph, motion

y\ picture camera, ...

! . P

Vector database

\, These inventions, including the
texts phonograph, the motion picture
S =) vectors camera, and the electric ...

J

&2 User guestion:

What are Thomas Edison's o\
most notable inventions? > LLM &

Retrieval-augmented generation (RAG)

25 User question:

most notable inventions?

v

What are Thomas Edison's LIM &}

Thomas invented
—| phonograph, motion

y> picture camera, ...

g3 Less hallucination

ﬁ Better personalization
ﬁ Easier updates

RAG is becoming the industry standard
G for reliable LLM serving

Applications for Produc

AWS > Documentation » Amazon SageMaker » Developer Guide

Retrieval Augmented Generation

(< PDF) (4 Rss) (P Focus mode

Foundation models are usually trained offline, making the model agnostic to any data that is created after the model was
trained. Additionally, foundation models are traine

d on very general domain corpora, making them less effective for

10

Retrieval-augmented generation (RAG)

3;, User question:

What are Thomas Edison's
most notable inventions?

Thomas invented

LLM XY} —» phonograph, motion

v

[Knowledge database

= texts g
vectors

y> picture camera, .

>4

-

These inventions, including the
phonograph, the motion picture

|

camera, and the electric ...

Vector database and retrieval play a key role in the pipeline

Various RAG algorithms of drastically different workload

Multiple system components on heterogeneous hardware

11

Retrieval-augmented generation (RAG)

&5 User question:

What are Thomas Edison's

Thomas invented
phonograph, motion

Cross-stack design is the future of ML systems

Algorithm, data, system, hardware, ...

Vector database and retrieval play a key role in the pipeline

Various RAG algorithms of drastically different workload

Multiple system components on heterogeneous hardware

12

My research: cross-stack, vector-centric ML systems

[1,3]

Algorithm Systems Cross-stack design is the future:
& data Algorithm, data, system, hardware, ...
[2]
[4-7] [8] [1] RAGO [ISCA25] [5] Falcon [VLDB’25 (revision)]
[2] Chameleon [VLDB'25] [6] SwiftSpatial [SIGMOD’25]
[3] PipeRAG [KDD’25] [7] MicroRec [MLSys’21]
Hardware [4] FANNS [SC'23] [8] FleetRec [KDD'21]

Only first-author papers are listed .

My research: cross-stack, vector-centric ML systems

Q

7

"

Retrieval-Augmented Generation

| o

Efficient Vector Search

T

Data Systems on Modern Hardware

MM
|]||2

|I|ﬁ-,3_.

T

1

Only first-author papers are listed

RAGO [ISCA25] Google
Chameleon [VLDB’25]
PipeRAG [KDD'25] dws

FANNS [SC’'23]
Falcon [VLDB'25 (revision)]

SwiftSpatial [SIGMOD’25]
MicroRec [MLSys'21] V2
FleetRec [KDD’21] Alibaba

14

My research: cross-sta : systems
System for algorithms

Q

Retrieval-Augmented Generation

T

Efficient Vector Search

T

Data Systems on Modern Hardwar

Only first-author papers are listed

5
@

MM

-"5]|I|ﬁ-,of.

e

I]I|2

T

RAGO [iSscA25] Google

Chameleon [VLDB’25]

PipeRAG [KDD’25] A
N’

FANNS [SC’'23]
Falcon [VLDB'25 (revision)]

SwiftSpatial [SIGMOD’25]

MicroRec [MLSys'21] V2
FleetRec [KDD’21] Alibaba

15

My research: cross-stack, vector-centric ML systems

Hardware for ML and data systems

RS

Retrieval-Augmented Generation

T

Efficient Vector Search

T

MM

-"5]|I|ﬁ-,of.

Data Systems on Modern Hardware

Only first-author papers are listed

|]||2

T

= Google
Chameleon [vLDB25]
PipeRAG [KDD’25] adWSs
N’

FANNS [SC’'23]
Falcon [VLDB'25 (revision)]

SwiftSpatial [SIGMOD’25]

MicroRec [MLSys'21] V2
FleetRec [KDD’21] Alibaba

16

My research: cross-stack, vector-centric ML systems

S8 orcnneraos Google
:) Algorithm for System Efficiency
Retrieval-Augmented G ~—
T PipeRAG kpD25] AWS
~—

@ FANNS [SC’23]

Falcon [VLDB'25 (revision)]

Efficient Vector Search

T SwiftSpatial [SIGMOD’25]
T
Data Systems on Modern Hardware z MicroRec [MLSys'21])
FleetRec [KDD'21] Alibaba

MM

|I|ﬁ-,3_.

T

1

Only first-author papers are listed .

My research: cross-stack, vector-centric ML systems

Q

20 RAGO [ISCA25] Google

Retrieval-Augmented Generation Chameleon [VLDB’25]

Algorithm-Hardware Co-design dws
\/
@ FANNS [SC’23]

Falcon [VLDB’25 (revision)]

Efficient Vector Search

T SwiftSpatial [SIGMOD’25]
T
Data Systems on Modern Hardware z MicroRec [MLSys'21] V)
FleetRec [KDD’21] Alibaba

MM

L

;_Ennrr’,_.

Only first-author papers are listed "

My research: cross-stack, vector-centric ML systems

{ ,
§@3 RAGO [ISCA25] Google
Retrieval-Augmented Generation Chameleon [VLDB’25]
PipeRAG [KDD’25] aws
T aws

@ FANNS [SC’23]

Efficient Vector Search

Hardware for ML and data systems)]
T .ﬁthlllﬂl_ \/
—El!l:wl];—_- SwiftSpatial [SIGMOD’25]
Data Systems on Modern Hardware 2 MicroRec [MLSys'21] €L

FleetRec [KDD'21] Alibaba

Only first-author papers are listed .

My research: cross-stack, ie M] systems
System-level

S RAGO [ISCA25] Google
S 9
Retrieval-Augmented Generation Chameleon [VLDB'25]
n:n/\\r_lLD:)’25] adWws
Hardware-level ~—"

Y FANNS[SC23]

Efficient Vector Search Falcon [VLDB’25 (revision)]
MMee

T SwiftSpatial [SIGMOD’25]
i
Data Systems on Modern Hardware 2 MicroRec [MLSys'21])
FleetRec [KDD'21] Alibaba

s

{_ﬂllll':o,_.

Only first-author papers are listed 0

Presentation Outline

Overview: ML system efficiency is beyond model acceleration
My research: cross-stack, vector-centric ML systems

RAGO: 1st systematic performance optimization for RAG
Efficiently serving diverse and evolving RAG algorithms

Chameleon: 15t heterogeneous accelerator system for RAG
Explore hardware specialization for vector search

Future work: next-generation machine learning systems
Spanning algorithms, databases, systems, and hardware

21

Optimizing RAG serving is challenging

Many RAG algorithm variants, no clear sign of convergence

Publshed. 204

Published 1 200

‘GENERALIZATION THROUGH MEMORIZATION:

SELF-RAG: LEARNING TO RETRIEVE, GENERATE, AND @ Interleaving Retrieval with Chain-of-Thought Reasoning
NEAREST NEIGHBOR LANGUAGE MODELS

REALM: Retrieval-Augmented Language Model Pre-Training CRITIQUE THROUGH SELF-REFLECTION for Knowledge-Intensive Multi-Step

Harsh Trivedi’ Tashar Khot'
g . ’, Do Jerstty!, i b A, Zeha W', Vg Wang [r—
Kelvin Gou"! Kentoa Lee*! Zora Tung! Panupeag Pasupat! Ming:Wel Chang! Ravy: Den Jecatty!] "Wnivcesty of Waskingion YAl AL 1Stoay Brook University *Allen Institue for Al
{akart, 2aqiuwal, yizhongw, hannaneh}#cs . vashington.edu. avitus. ibm, com ‘Stany Brock, US.A. Seattle, US A
Wi il e, fm g e 1, it samro. o (o b g
" e] —

el e g s been shown 10 ! A -~
copton & pring ot f b owiohs, E:_:,}Wr Abstract ot
ruca for NUP ks s s qoetion sverig et D e ol it e g i 1. ——— — ittt
However, s knmicdge is ored impleity X AssTRACT g fctu e e o s sl e (L12b oo mepigly povec 5 e

.-\-w;mqm.-na Retmevr Avgmeied Geeery e e i s @

e parametes of newra netwee, requiing ever
lrger

imerpectabilty sod sodulucty.

1. Introduction
Recent sévances model — - I
s o i BERT D 120 Fage o e e e what = sy cormned ...u,mwm m-mmmm,m ing.complen questioas by geoeratng sep-dy- pict
el ek, Thi makes — o e oy Ik . e e B et o ot e o - cosu ol d relag O st natural g resceing ieps—so caled sourcebased sl o ki e MASIVDS. v i gt et e
g courbuicn ‘Googh Resewch. Comnponiencs sdge i sired e B T Ve e 1o patcen oy ALy o) st ot i i of gt COT)—ahen o s 1y st L3 d D3
1, Ketva Gox gm@poyieceas. Keown Lee <M 4o puce o livod b e we conduct highevel, oy o s hog propah ing bomm gty pritely (W beer factond based 1. piped
e resneval wegmesied geoeration porformance. Out work cpemn Up Dew svesses progieg 00 cn gt s pending gt oo A B 3 -y r-.-, iy bn ol of agrevi r revivwsdi gty e
ey s < g o ‘Mg wel Chare. ol u-n--k—!-fu memery for lasgu l-the-art perplesity of 15,79 — 8 2.86 pois improvernent over the bas S improveg language models throagh explice oy sontmued peverson wih Ww‘"kW‘ If,ito Notably, ot al. 2020: Bocpeo "u ehakoe ot oot aing . Oveml
<ringeeiang® geogh e ‘which can be probibit RAG models A Lo s s retos ol e (g1, Soqundy, SELTRAG o A 2022), i sraegy b
the non-parametric momery is 8 dense estoc inde o s . 2 .
Pconding of the 37 It Cnerce on Macking 0 gt kncmlodgs 4 et besead retrieve:. We compuro two § kg ! e comders b o szl L~
e e Ao i o 19, 0 Coprigu 200y 0, o] condicns o he s e prnage st ¢ frelyi spbrmpuisr ey et pog 1 Lanpings modelin 20 winpeviond ko comits 45000 i s e e ek bty Pt pai
Lamgage Mol B e B ot iling e by ol v el by it v Ot e s i e sl o 5 1 Introduction it couatambromnrirent informaice bised on
st omthree open doma QA sk, ctpetormi)= gtsh
a0 sk specitie retrieve-anb exsact wchitectares. Tl ptrls), Newalstworks hve peven o be Pose i ilons i Long-ccatext langusge madels (LCLMs) [9, 21, 45, 4, 52 hold 10044,
‘e i s RAG ol peneae meee spocifc, i ' e o o e s § o Sacmpabis. sforand e et e et o 13 Mg of e st o
¥ ae-of the. e arameihc oty e DS Mikor sy, 200, Grven 3015 Sttt . 916 s ey e et bl cormry iy Lo Ppers, g MOS0
o e ey s o o (it » Wi o el e oy e evponierci) by .14 3236303 Aameo b o
o, 2017, shot s sntion Yo consestuaive e pus. banguage
T — 1 Introduction e bave come fom ncee. el 0 i Slrcover,techaques sch a adiag Incions (7, 9, 1],

ing the amount of duta, . or model po W show = leversging
T s Wk e e Y retricving based an 3 pre-tained froven BERY model o optmize LELMs for the taek s hand,
% et e s L) woks e rmovig the sedforweing md How iy o

e rks e eyl ks By 1230 ot bnc s 51

ey e e L1 ks 0 s Pt g s
Tand e

b tegmintoee, ot Hoas el o 7% ot et o 8 4 s

s
their prodictions, produce “hallocinaicns” (18 Figure |
- gure

LLAMA-2 40d LLAMA-3 models. Right: Compuac.opeiml scaling of reteval-duscd language
mcaels vs. LM-caly models with PYTHIA models. By cassidering e sie of the dssstone 45

24

e

 bereasonst
eace, sayia, UShe oGRS Copy. mproved .n..mr-uy----guum-
sy e bt ‘amd the oumber of resieved oeighbours. Our rgest model

s cxpaied,
inspected and interpested. REALM (3] and ORQA [11). rwo ecessly inrodeced models that

Preuie. Usdes sevien

22

Case study 1: RAG with hyper-scale retrieval

Argument: Smaller model + hyper-scale retrieval = Larger model

10x model size saving given similar generation quality [1,2]

Retrieval > — > -
Prefix Decode

—] /\

Internet-scale corpus with two trillion tokens according to DeepMind [1]

[1] Borgeaud et al. “Improving Language Models by Retrieving from Trillions of Tokens”, 2022
[2] Wang et al. “InstructRetro: Instruction Tunning Post Retrieval-Augmented Retraining”, 2023

23

Case study 1: RAG with hyper-scale retrieval

RAG with smaller models achieve better QPS/chip than larger LLMs
10x size difference (RAG-8B vs LLM-70B) but only 1.5x speedup

—eo— RAG 8B -#- LLM-only 70B

20 -
2 =
N el <
o Q
o L
Q %’10—
¢ £
C 0~

| | | | |
0.00 0.01 0.02 0.03 0.04 0.05

RAG overhead: (1) longer prompts and (2) hyper-scale retrieval

24

Case study 1: RAG with hyper-scale retrieval

8B LLM + large-scale retrieval
100 mE — —_—

1 query 2 queries 4 queries 8 queries

Hyper-scale retrieval can be a major bottleneck

(2"d half of this talk addresses retrieval performance)

Case study 2: RAG for long-context processing

Answering questions of user-defined long context in real-time

(2 |
' = Q

|11

=

Naive solution: include documents in the prompt (e.g., 1M tokens)

Possible but very costly, e.g., 60 USD / million token for GPT4

RAG solution: retrieve relevant passages

Significant lower cost with comparable quality [1,2]

[1] Lee et al. “Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?”, 2024

[2] Yue et al. “Inference Scaling for Long-Context Retrieval Augmented Generation”, 2024
26

Case study 2: RAG for long-context processing

Divide the document into many passages

Encode each passage into a vector using a BERT-style model

Database LLM LLM

Encode >| Retrieval Prefix Decode

Small model (e.g., 100M~1B) + small databases (1K~1M vectors)

[1] Lee et al. “Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?”, 2024

[2] Yue et al. “Inference Scaling for Long-Context Retrieval Augmented Generation”, 2024
27

Case study 2: RAG for long-context processing

Encoder (120M) << LLM (70B)

Encoder 500x smaller

Drastically different workloads across RAG algorithms

Document lengths (tokens)

1. Even a small encoder model can become the bottleneck

2. Retrieval performance does not matter even with brute-force scan

RAGSchema: workload abstraction for RAG algorithms

RAGSchema = Model components + Retrieval configurations

l * Regular LLM serving
N\
Database Rewrite Rewrite : LLM LLM
Encode g (prefix) B (decode) - Retrleval+ Rerank > Prefix g Decode
J

Optional models in addition to the main LLM

29

RAGSchema: workload abstraction for RAG algorithms

RAGSchema = Model components + Retrieval configurations

l

* Regular LLM serving

Database
Encode

Rewrite
(prefix)

Rewrite
(decode)

Rerank

LLM
Prefix

N\

_—

LLM
Decode

Database sizes; multi-query retrievals; iterative retrievals

30

RAGO: Retrieval-Augmented Generation Optimizer

Inputs: RAGSchema + Hardware resources

Outputs: Optimal performance + System configurations

N — S
|
| —
| —— Ia.: —F: RAGO for Performance
_J = ! RAG serving Pareto
0.0 ' |
® | RAGSchema Optimizing:
| .
Fan_ | ,
|

analysis

U ¢y Task placement
sers —— —T
l | 7¥ Resource allocation

I Resources : {¥ Batching policy

Optimal
system config

. Bottleneck
~y

RAGO system design space

Task placement + Resource allocation + Batching

a4 Y

ST Rewrite XU Rerank + Prefix X Decode
o an e a—-a— — e e - — = = == o= o= o= o= o= oe— - I ———————— N\
' I | ' : |
o ol |1|T| |@ © l|9 | @ T |
S ol |2l |8 s s 3|
| < <l ||<| |< < : < <|
L___l___J] ' S !
f--------)/\-- _________________

|
: Both optimize Time-To-First-Token latency !
Both are compute-intensive

RAGO system design space

Task placement + Resource allocation + Batching

7~

Y a4 Y

S\ . S\ . AN

K Rewrite L Rerank + Prefix L Decode
o— em em em em em = e - (e e I ———————— S\
l I | '© : |
o ol |1|T| |@ o |! [S T |
| 8 I HEINE: 3= 8 3|
|| < < |/[<] |< <1 < <,
' I | ' L J

Time-To-First-Token latency
Compute-intensive

Time-Per-Output-Token latency
Memory-intensive

RAGO system design space

Resource allocation

2\?‘ Workload and performance requirement per component
e e e ~ Y 3\
| I | : |
' o ol 1|o| | [O® |3 T | |
'l 3 sl 1| 3| |3 S| >3 S|
| < <l |<| |< < H < <|
L___ | | | L ________]
@] ®
(——————————————————————————————————
| (= '
| t Retrieval CPU Server CPU Server I
' |

_— e —— — — =

34

RAGO system design space

Batching
o\ . o\
& Rewrite & Relfalﬂk+| Latency-Throughput trade-off
—— T ~ ——_—— - wininininininis S
[] | ' : |
N sl ilsl | o 3|1 ® | = 3| |
i 5 sho | 8[| 8 3|3 3]
| < <, <] < < B¢ <,
L___ | | | L ________]

@] ®

- - - " -"=-"=-""-"="-""="="=""="=-"=-== ----------------“l
: % Retrieval CPU Server CPU Server :

_— e —— — — =

35

Finding optimal schedules in RAGO

RAGO: cost-model-based system design space exploration

1. Inference cost model

} Well-tuned roofline models
2. Retrieval cost model

3. RAG cost assembler to evaluate end-to-end performance
a) Calculate performance Pareto per RAG component

b) Explore schedule combinations between components

36

Evaluation: performance of various schedules

Each curve is a resource allocation plan with various batch sizes:

RAGO: proper

“ resource allocation

64.1x] Long-context processing:

database encoder << LLM

QPS per chip
Throughput

Time-To-First-Token (TTFT) Latency

Naive plan: little resources for the small encoder
37

RAGO: 1st systematic RAG serving optimization

Characterizing performance across RAG paradigms

Drastically different performance characteristics

RAGSchema: RAG workload abstraction

Unified representation for various RAG algorithms

RAGO: cost-model-based performance optimization

Optimize placement, allocation, and batching policies

38

Presentation Outline

Overview: ML system efficiency is beyond model acceleration
My research: cross-stack, vector-centric ML systems

RAGO: 1st systematic performance optimization for RAG
Efficiently serving diverse and evolving RAG algorithms

Chameleon: 15t heterogeneous accelerator system for RAG
Explore hardware specialization for vector search

Future work: next-generation machine learning systems
Spanning algorithms, databases, systems, and hardware

39

Vector search: problem definition

. BBEE-®

o P @
o o o P
o
o o o ® o
o o ¢
o O
. ° o %o o o o A
o o © . @ .
0 o
o © ® database vectors

40

Vector search: problem definition

o
. . . . o o .
0 o 0 o

query vector _ _e o : ® o

® L = *. ®

o O

. ° o %o o o o A

o o © . @ .
o ®

o o ® database vectors

41

Vector search: problem definition

@ return region
/I o o

database vectors

42

Vector search = approximate nearest neighbor search

IVF-PQ: a popular vector search algorithm in RAG

Inverted-file (IVF) index: Product quantization (PQ):
prune the search space lossy compression of vectors
query
| d dappr?x | |
N , h ——)e - e - — — e — — e — — -
o™ 7% 1 T
O
e T vt chi St
Bl Ak Sk S S
S SE R Shhi St S
database Sy ap ag ay

vectors :
raw vectors @ quantized vectors

43

Large-scale vector search on existing systems

Ideal system: sufficient memory capacity + fast PQ decoding
Decode: each byte code involves two fetch operations

CPU: too slow for PQ decoding @
Intensive table lookup operations overload the cache

Low throughput of 1~1.5 GB/s per core

GPU: prohibitively expensive at scale &

Limited High-Bandwidth Memory (HBM) capacity

Energy wasted by idle compute units

44

Hardware specialization is increasingly popular

Compute

Announcing Trillium, the sixth generation of
Google Cloud TPU

Yy

It’s time to think about retrieval acceleration

45

Proposed RAG system design principles

Reqguirement: fast inference + fast vector search
Principle 1: accelerator heterogeneity

Inference accelerators + vector search accelerators

Reguirement: accommodate diverse RAG algorithms
Principle 2: accelerator disaggregation

Handle various performance bottlenecks across RAGs

46

Chameleon: accelerator heterogeneity + disaggregation

ChamVS.mem

FPGA-based Disaggregated Memory Node

()

@ ChamVs

Near-Memory K=

Accelerator

[+]

/

L

« = User questions

\“:j“““

GPU Process
CPU

4/:/ Coordinator
Disaggregated Memory Node - GPU Process

GPU Process

Disaggregated Memory Node |

—-— e e e e e e e s e s e e e e e e e e = ey,
S PRGNS S S ———

47

Chameleon: accelerator heterogeneity + disaggregation

ChamLM + ChamVS.idx

<« = User questions) -
N 00,
b\
LLM IVF Index

GPU Process

CPU

N
~| cCoordinator |
s

GPU Process

GPU Process

48

Chameleon: accelerator heterogeneity + disaggregation

GPU Process

rr-_-=--"=m=--="=-=-m=-"""-=-"-=-=-=== \

: ChamLM + ChamVS.idx |

' l

<« = User questions : Y o :

o N

| P\ |

f LLM IVF Index :
|

N> | GPU Process :

CPU | : ,

~7| Coordinator \ |

Ve | » GPU Process :
|

' l

| |

' l

| |

— e e— e e e e e e e em—n e emmn emmn e e— —

49

Chameleon: accelerator heterogeneity + disaggregation

« = User questions
e 00;

ﬂ j» IVF Index
|
: GPU Process
|
\
| |
|
|
|
|
|

CPU

N
~| cCoordinator |
s

GPU Process

GPU Process

—— —_— —_— —_— —_— — —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_——_— —_—

— e e— e e e e e e e em—n e emmn emmn e e— —

50

Chameleon: accelerator heterogeneity + disaggregation

GPU Process

r - ----------=-=--=-=== \

: ChamLM + ChamVS.idx |

| I

« = User questions : 2 5 :

o N

| P\ |

j» LLM IVF Index :
|

N> | GPU Process :

CPU | : |

~7| Coordinator \ |

Ve | » GPU Process :
|

| I

| |

| I

| |

— e e— e e e e e e e em—n e emmn emmn e e— —

51

Chameleon: accelerator heterogeneity + disaggregation

ChamVS.mem

()

I
I
FPGA-based Disaggregated Memory Node |
I
I

[+]

/

ﬂ f LLM IVF Index
|
I GPU Process

CPU

|
Coordinator ‘\:»
| GPU Process

@® ChamVs
Near-Memory K=

Accelerator

Disaggregated Memory Node

Disaggregated Memory Node | GPU Process

TCP/IP

S PRGNS S S ———

52

Chameleon: accelerator heterogeneity + disaggregation

ChamVS.mem

FPGA-based Disaggregated Memory Node

.._L User questions

!

CPU
Coordinator

@® ChamVs
Near-Memory K=)

Accelerator

Lm
;
N

P

Disaggregated Memory Node mill

Disaggregated Memory Node

53

Chameleon: accelerator heterogeneity + disaggregation

— e ean s s es e s s e s en e s en e eas e e S ey,

ChamVS.mem

FPGA-based Disaggregated Memory Node

@® ChamVs
Near-Memory K=)

Accelerator

_TCP/IP |

Disaggregated Memory Node

-_— e, e,e—me,— ee,— ee,— ee— ee,— e, ee—e— e,— e— e,— e—— e, e e, e, e, . e— e—

|

|

|

l L

4/:/' Coordinator

Disaggregated Memory Node '

|

|

|

|

|

.._L User questions

!

CPU

P

54

Chameleon: accelerator heterogeneity + disaggregation

ChamVS.mem

()

I
I
FPGA-based Disaggregated Memory Node |
I
I

[+]

/

ﬂ f LLM IVF Index
|
I GPU Process

CPU

|
Coordinator ‘\:»
| GPU Process

@® ChamVs
Near-Memory K=

Accelerator

Disaggregated Memory Node

Disaggregated Memory Node | GPU Process

TCP/IP

S PRGNS S S ———

55

Chameleon: accelerator heterogeneity + disaggregation

ChamVS.mem ChamLM + ChamVS.idx

(\
, | : |
| l : |
I FPGA-based Disaggregated Memory Node | : |
: . w : < = User questions : Y 0 :
L] o 'Y
| @ ChamVs o I ﬂ ' ‘S(?} |
| Near-Memory K= o |
O I IVF Index
I -H Accelerator [' |
| GRA= | ' |
| - g | | GPU Process |
I | CPU : |
! 4/:/’ Coordinator : |
: Disaggregated Memory Node I | GPU Process :
: | ' |
: | ' |
: l ' |
: Disaggregated Memory Node | | GPU Process :
|
| | 1
_______________________ - \ €

56

ChamVS: near-memory retrieval acceleration

r 2

o o o \

: ChamVS Near-Memory Accelerator | FPGA
I - ! Board
[1 » Dist. Lookup Table Construct I

| |

I 6 I

| g ©

I : R <—{ Lovel-1 Queue P ¢ \ \| DRAM
: @ Q S m PQ Decode « [1 Y] Channel
; [; s 5 9 ««— Level-1 Queue 2|

- (e} o

| Z k: >+ _Level-1 Queue] = <::':> DRAM
| z - 5 PQ Decode S | Channel
: a -0 > ¢ < <— Level-1 Queue ¥ >| |

I o Q o |

| = € h v S| !

| S > 1¢— Level-1Queue] s | 1

| 2 3 PQ Decode — DRAM
| <— Level-1 Queue | Channel
I ——

Q J

Compared to CPUs: faster PQ decoding

Compared to GPUs: abundant capacity; lower latency

ChamVsS: near-memory retrieval acceleration

m-byte PQ codes

- . -
o ChamVs Near-Memory Accelerator | FPGA ~ 7 InputFIFO— C, C, C, C.,]|C., o
v © IDist. Lookup Table Construct? : Board ’ T T T T T

' ~ | Y v v v v
addr | dist. ~ 1 C Cle ~ —
o - N 1 1
o | 7.2 s|[(=] |s y £ £ e
ARHEBE e
1 3.4 @ o @ o o
/ m m
2 6.8 ~
/ O

/
/
/

S 254 | 46 |/
\ / \ A/
\ 255 5.3
\ v
One column of the

Parallel lookup + Parallel computation + Pipeline parallelism

High throughput of one result distance per clock cycle

58

ChamVS: near-memory retrieval acceleration

e ™
|— __ \
| ChamVS Near-Memory Accelerator | FPGA
I - | Board
I 1, » Dist. Lookup Table Construct I
I I
[6 I
| X . N + :
I s Level-1 Queue -~ 3 : : D DRAM
: 2 5 g PQ Decode « * - I Channel
5 = g Level-1 Queue ?‘/ 2 |
:]l ' D z © g l o1 1
5 o > Level-1 Queue |w_ £ | DRAM
: z @ = 5 PQ Decode K[§ [V 1 “|_Channel
| % ; = Level-1 Queue I‘/ ¥ > I
| o 5] ~ o I
(&) 14 1 E |
| = =) + @
| [> Level-1 Queue |w_ s |
| 2 3 PQ Decode KH=> <::||::> DRAM
' Level-1 Queue |‘/ Channel
I I
__
\ Y,

Now we have very fast PQ decoding: dozens of results per cycle

Challenge: inserting many distances into top-K queue per cycle

59

ChamVS: near-memory retrieval acceleration

Systolic priority queue:

_?-‘ Level-1 Queue ?v\ 3 -
i PQ Decode
Id)} ngh throughput (“;" Level-1 Queue ?‘/
. . > Level-1 Queue |w__
one ingestion / two cycles 1% | PQDecode K—
£ Level-1 Queue v
5> High resource consumption h v
> 1< Level-1 Queue |w__
- PQ Decode (}Z
queue length x queue num {«— Level-1 Queue |4~

Question: how to reduce hardware resource consumption?

60

Approximate hierarchical priority queue

Example: 16 queues to collect 100 nearest neighbors

Is it likely that all 100 results are located in one queue?

~1.0

0.15+~ I
< 0.10 - e
S (1) X
= 99.9% (k<20) 0.5 9

0.05 - l

0.00 - I I \ , - : I;O.O

0 20 40 60 80 100

Finding: Most queues only contain less than 20 results

61

Approximate hierarchical priority queue

Idea: Truncate the queues significantly while achieving
similar K-selection quality (e.g., 99% identical results)

gueue

Summary: Retrieval accelerator =
Fast PQ decoding + Efficient K-selection

Min length
10X

per L1

"0 5 10 15 20 25 30
Number of L1 queues

10x resource saving without notable recall degrade

62

Vector search performance and energy efficiency

Baselines = 1rrGAsCRy Chameleon

Dataset: SIFT <O O

BD) ea, i

z . -

1 4 16 64
Batch size

—
o
Lo

-

—

Latency (ms)
S,

Chameleon achieves up to 16.6x speedup over CPU baseline

Energy efficiency (Joule/query) is up to 26.2x better than CPU
End-to-end RAG speedup: 2.2x in latency and 3.2x in throughput

63

My research: next-generation ML infrastructure

- [1,3] Cross-stack design is the future:
Algorithm Systems | g |
& data Strong interplays between algorithm,
[2] data, system, hardware, ...
[4-7] [8] | | -
[1] RAGO [ISCA25] [5] Falcon [VLDB’25 (revision)]
[2] Chameleon [VLDB'25] [6] SwiftSpatial [SIGMOD’25]
[3] PipeRAG [KDD'25] [7] MicroRec [MLSys'21]
Hardware

[4] FANNS [SC'23] [8] FleetRec [KDD’21]

Only first-author papers are listed »

	Slide 1
	Slide 2: Computing infrastructure drives AI advancement
	Slide 3: Computing infrastructure drives AI advancement
	Slide 4: Tremendous investments on ML infrastructure
	Slide 5: Presentation Outline
	Slide 6: Retrieval-augmented generation (RAG)
	Slide 7: Retrieval-augmented generation (RAG)
	Slide 8: Retrieval-augmented generation (RAG)
	Slide 9: Retrieval-augmented generation (RAG)
	Slide 10: Retrieval-augmented generation (RAG)
	Slide 11: Retrieval-augmented generation (RAG)
	Slide 12: Retrieval-augmented generation (RAG)
	Slide 13: My research: cross-stack, vector-centric ML systems
	Slide 14: My research: cross-stack, vector-centric ML systems
	Slide 15: My research: cross-stack, vector-centric ML systems
	Slide 16: My research: cross-stack, vector-centric ML systems
	Slide 17: My research: cross-stack, vector-centric ML systems
	Slide 18: My research: cross-stack, vector-centric ML systems
	Slide 19: My research: cross-stack, vector-centric ML systems
	Slide 20: My research: cross-stack, vector-centric ML systems
	Slide 21: Presentation Outline
	Slide 22: Optimizing RAG serving is challenging
	Slide 23: Case study 1: RAG with hyper-scale retrieval
	Slide 24: Case study 1: RAG with hyper-scale retrieval
	Slide 25: Case study 1: RAG with hyper-scale retrieval
	Slide 26: Case study 2: RAG for long-context processing
	Slide 27: Case study 2: RAG for long-context processing
	Slide 28: Case study 2: RAG for long-context processing
	Slide 29: RAGSchema: workload abstraction for RAG algorithms
	Slide 30: RAGSchema: workload abstraction for RAG algorithms
	Slide 31: RAGO: Retrieval-Augmented Generation Optimizer
	Slide 32: RAGO system design space
	Slide 33: RAGO system design space
	Slide 34: RAGO system design space
	Slide 35: RAGO system design space
	Slide 36: Finding optimal schedules in RAGO
	Slide 37: Evaluation: performance of various schedules
	Slide 38: RAGO: 1st systematic RAG serving optimization
	Slide 39: Presentation Outline
	Slide 40: Vector search: problem definition
	Slide 41: Vector search: problem definition
	Slide 42: Vector search: problem definition
	Slide 43: Vector search ≈ approximate nearest neighbor search
	Slide 44: Large-scale vector search on existing systems
	Slide 45: Hardware specialization is increasingly popular
	Slide 46: Proposed RAG system design principles
	Slide 47: Chameleon: accelerator heterogeneity + disaggregation
	Slide 48: Chameleon: accelerator heterogeneity + disaggregation
	Slide 49: Chameleon: accelerator heterogeneity + disaggregation
	Slide 50: Chameleon: accelerator heterogeneity + disaggregation
	Slide 51: Chameleon: accelerator heterogeneity + disaggregation
	Slide 52: Chameleon: accelerator heterogeneity + disaggregation
	Slide 53: Chameleon: accelerator heterogeneity + disaggregation
	Slide 54: Chameleon: accelerator heterogeneity + disaggregation
	Slide 55: Chameleon: accelerator heterogeneity + disaggregation
	Slide 56: Chameleon: accelerator heterogeneity + disaggregation
	Slide 57: ChamVS: near-memory retrieval acceleration
	Slide 58: ChamVS: near-memory retrieval acceleration
	Slide 59: ChamVS: near-memory retrieval acceleration
	Slide 60: ChamVS: near-memory retrieval acceleration
	Slide 61: Approximate hierarchical priority queue
	Slide 62: Approximate hierarchical priority queue
	Slide 63: Vector search performance and energy efficiency
	Slide 64: My research: next-generation ML infrastructure
	Slide 65: Backup Slides
	Slide 66: Backup: Research Overview
	Slide 67: Presentation Outline
	Slide 68: Presentation Outline
	Slide 69: Presentation Outline
	Slide 70: Research: next-generation ML and data systems
	Slide 71: Research: next-generation ML and data systems
	Slide 72: Research: next-generation ML and data systems
	Slide 73: Backup: RAG Background
	Slide 74: Optimizing RAG serving is challenging
	Slide 75: Optimizing RAG serving is challenging
	Slide 76: Efficient RAG serving is important but challenging
	Slide 77: Backup: RAGO Case Studies
	Slide 78: Case studies of representative RAG workloads
	Slide 79: Case study setup
	Slide 80: Case study 1: RAG with hyper-scale retrieval
	Slide 81: Case study 3: RAG with iterative retrievals
	Slide 82: Workload characteristics of other RAG paradigms
	Slide 83: Workload characteristics of other RAG paradigms
	Slide 84: Workload characteristics of other RAG paradigms
	Slide 85: Case study 3: RAG with iterative retrieval
	Slide 86: Case study 3: RAG with iterative retrieval
	Slide 87: Case study 3: RAG with iterative retrieval
	Slide 88: Case study 3: RAG with iterative retrieval
	Slide 89: Case study 3: RAG with iterative retrieval
	Slide 90: Case Study 3: understanding idleness
	Slide 92: Case study 4: RAG with rewriter and reranker
	Slide 93: Case study 4: RAG with rewriter and reranker
	Slide 94: Case study 4: RAG with rewriter and reranker
	Slide 95: Backup: RAGO design decisions
	Slide 96: System design decisions for RAG serving
	Slide 97: System design decisions for RAG serving
	Slide 98: System design decisions for RAG serving
	Slide 99: System design decisions for RAG serving
	Slide 100: System design decisions for RAG serving
	Slide 101: System design decisions for RAG serving
	Slide 102: Batching policies in RAGO
	Slide 103: Collocation policies in RAGO
	Slide 104: Backup: RAGO Evaluation
	Slide 105: Case study setup
	Slide 106: Evaluation of various RAGO schedules
	Slide 107: Evaluation of RAGO schedules: end-to-end
	Slide 108: Evaluation of RAGO schedules: end-to-end
	Slide 109: Evaluation of RAGO schedules: task placement
	Slide 110: Case studies overview
	Slide 111: RAGO collocation sensitivity in case 2
	Slide 112: Evaluation of RAGO schedules: batching
	Slide 113: RAGO batching in Case 1
	Slide 114: RAGO batching in Case 4
	Slide 115: Backup: IVF-PQ
	Slide 116: Recap: Hyper-scale retrieval as the bottleneck
	Slide 117: IVF-PQ for large-scale ANNS
	Slide 118: Inverted-file (IVF) index
	Slide 119: Inverted-file (IVF) index
	Slide 120: Inverted-file (IVF) index
	Slide 121: Inverted-file (IVF) index
	Slide 122: Inverted-file (IVF) index
	Slide 123: Product quantization (PQ): training
	Slide 124: Product quantization (PQ): training
	Slide 125: Product quantization (PQ): training
	Slide 126: Product quantization (PQ): training
	Slide 127: Product quantization (PQ): searching
	Slide 128: Product quantization (PQ): searching
	Slide 129: Product quantization (PQ): searching
	Slide 130: Backup: Systolic Priority Queue
	Slide 131: ChamVS: near-memory retrieval acceleration
	Slide 132: Systolic priority queue for high-throughput insertion
	Slide 133: Systolic priority queue for high-throughput insertion
	Slide 134: Systolic priority queue for high-throughput insertion
	Slide 135: Systolic priority queue for high-throughput insertion
	Slide 136: Systolic priority queue for high-throughput insertion
	Slide 137: Systolic priority queue for high-throughput insertion
	Slide 138: Systolic priority queue for high-throughput insertion
	Slide 139: Systolic priority queue for high-throughput insertion
	Slide 140: Near-memory retrieval accelerator
	Slide 141: Backup: Chameleon Evaluation
	Slide 142: Evaluation settings
	Slide 143: Vector search performance
	Slide 144: Vector search performance
	Slide 145: Vector search performance
	Slide 146: End-to-end retrieval-augmented generation
	Slide 147: End-to-end retrieval-augmented generation
	Slide 148: Evaluation settings
	Slide 149: Evaluation settings: models
	Slide 150: Evaluation settings: vector search
	Slide 151: Evaluation settings: hardware
	Slide 152: Evaluation settings: vector search combinations
	Slide 153: Vector search energy efficiency
	Slide 154: Vector search scalability
	Slide 155: End-to-end retrieval-augmented generation
	Slide 156: Vector search performance
	Slide 157: Vector Search Performance
	Slide 158: ChamVS vector search scalability
	Slide 159: FPGA resource consumptions
	Slide 160: End-to-end RAG latency
	Slide 161: End-to-end RAG latency
	Slide 162: RAG Throughput - Large models
	Slide 163: RAG Throughput - Large models
	Slide 164: Performance bottlenecks vary across RAGs

