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2 x NVIDIA GTX 580 gaming GPUs

Each GPU: 3 GB memory,1.5 TFLOPs

Computing infrastructure drives AI advancement
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2012



2 x GTX 580

1.5 TOPs / chip

60M parameters

Computing infrastructure drives AI advancement
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2015 2018 20232012

103 per-chip performance x 104 chips = 107 improvement

25,000 x NVIDIA A100

1248 TOPs / chip

> 1T parameters

10 years
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Tremendous investments on ML infrastructure

Sources: https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/

https://www.trendforce.com/presscenter/news/20250106-12433.html

Machine learning system efficiency matters!

https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://www.trendforce.com/presscenter/news/20250106-12433.html
https://www.trendforce.com/presscenter/news/20250106-12433.html
https://www.trendforce.com/presscenter/news/20250106-12433.html


5

Presentation Outline

Overview: ML system efficiency is beyond model acceleration

My research: cross-stack, vector-centric ML systems

RAGO: 1st systematic performance optimization for RAG

Efficiently serving diverse and evolving RAG algorithms

Chameleon: 1st heterogeneous accelerator system for RAG

Explore hardware specialization for vector search

Future work: next-generation machine learning systems

Spanning algorithms, databases, systems, and hardware
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Key idea: pair LLMs with retrievals from external databases
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Prompt = question + retrieved documents



What are Thomas Edison's 

most notable inventions?

These inventions, including the 

phonograph, the motion picture 

camera, and the electric …

User question:

Thomas invented 
phonograph, motion 
picture camera, …

LLM

Knowledge database

texts

vectors

Retrieval-augmented generation (RAG)

Less hallucination

Better personalization

Easier updates

Lower cost
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RAG is becoming the industry standard

for reliable LLM serving



Retrieval-augmented generation (RAG)
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Vector database and retrieval play a key role in the pipeline

Various RAG algorithms of drastically different workload

Multiple system components on heterogeneous hardware
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Retrieval-augmented generation (RAG)
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Vector database and retrieval play a key role in the pipeline

Various RAG algorithms of drastically different workload

Multiple system components on heterogeneous hardware

What are Thomas Edison's 

most notable inventions?

These inventions, including the 

phonograph, the motion picture 

camera, and the electric …

User question:

Thomas invented 
phonograph, motion 
picture camera, …

LLM

Knowledge database

texts

vectors

Cross-stack design is the future of ML systems

Algorithm, data, system, hardware, …



My research: cross-stack, vector-centric ML systems

Algorithm

& data
Systems

Hardware

[2]

[1,3]

[4-7] [1] RAGO [ISCA’25]

[2] Chameleon [VLDB’25]

[3] PipeRAG [KDD’25]

[4] FANNS [SC’23]

[5] Falcon [VLDB’25 (revision)]

[6] SwiftSpatial [SIGMOD’25]

[7] MicroRec [MLSys’21]

[8] FleetRec [KDD’21]
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[8]

Cross-stack design is the future:

Algorithm, data, system, hardware, …

Only first-author papers are listed



My research: cross-stack, vector-centric ML systems

Only first-author papers are listed
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My research: cross-stack, vector-centric ML systems

Only first-author papers are listed
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Only first-author papers are listed
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My research: cross-stack, vector-centric ML systems

Only first-author papers are listed
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My research: cross-stack, vector-centric ML systems

Only first-author papers are listed
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Overview: ML system efficiency is beyond model acceleration

My research: cross-stack, vector-centric ML systems

RAGO: 1st systematic performance optimization for RAG

Efficiently serving diverse and evolving RAG algorithms

Chameleon: 1st heterogeneous accelerator system for RAG

Explore hardware specialization for vector search

Future work: next-generation machine learning systems

Spanning algorithms, databases, systems, and hardware

21

Presentation Outline



Optimizing RAG serving is challenging

Many RAG algorithm variants, no clear sign of convergence

22

Drastically different workload characteristics



Argument: Smaller model + hyper-scale retrieval = Larger model

10x model size saving given similar generation quality [1,2]

Case study 1: RAG with hyper-scale retrieval

[1] Borgeaud et al. “Improving Language Models by Retrieving from Trillions of Tokens”, 2022

[2] Wang et al. “InstructRetro: Instruction Tunning Post Retrieval-Augmented Retraining”, 2023

23

Retrieval
LLM

Prefix

LLM

Decode
Case 1:

Prompt computation (question + retrieved documents)Iterative token generationInternet-scale corpus with two trillion tokens according to DeepMind [1]



Case study 1: RAG with hyper-scale retrieval

RAG with smaller models achieve better QPS/chip than larger LLMs

10x size difference (RAG-8B vs LLM-70B) but only 1.5x speedup

1.5x

24

Time-To-First-Token (TTFT) Latency
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RAG overhead: (1) longer prompts and (2) hyper-scale retrieval



Case study 1: RAG with hyper-scale retrieval
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Hyper-scale retrieval can be a major bottleneck

(2nd half of this talk addresses retrieval performance)



Answering questions of user-defined long context in real-time

Case study 2: RAG for long-context processing

[1] Lee et al. “Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?”, 2024

[2] Yue et al. “Inference Scaling for Long-Context Retrieval Augmented Generation”, 2024
26

Naive solution: include documents in the prompt (e.g., 1M tokens)

Possible but very costly, e.g., 60 USD / million token for GPT4

RAG solution: retrieve relevant passages

Significant lower cost with comparable quality [1,2]



Retrieval
LLM

Prefix

LLM

Decode

Database 

Encode
Case 2:

Divide the document into many passages

Encode each passage into a vector using a BERT-style model

Case study 2: RAG for long-context processing

Small model (e.g., 100M~1B) + small databases (1K~1M vectors)

[1] Lee et al. “Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?”, 2024

[2] Yue et al. “Inference Scaling for Long-Context Retrieval Augmented Generation”, 2024
27
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Case study 2: RAG for long-context processing

Encoder (120M) << LLM (70B)

Encoder 500x smaller

Document lengths (tokens)

1M 10M100K

1. Even a small encoder model can become the bottleneck

2. Retrieval performance does not matter even with brute-force scan 

Drastically different workloads across RAG algorithms



Regular LLM serving

Retrieval
LLM

Prefix

LLM

Decode

Database 

Encode

Rewrite 

(prefix)
Rerank

Rewrite

(decode)

29

RAGSchema: workload abstraction for RAG algorithms

RAGSchema = Model components + Retrieval configurations

Optional models in addition to the main LLM



Regular LLM serving

Retrieval
LLM

Prefix

LLM

Decode

Database 

Encode

Rewrite 

(prefix)
Rerank

Rewrite

(decode)
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RAGSchema: workload abstraction for RAG algorithms

RAGSchema = Model components + Retrieval configurations

Database sizes; multi-query retrievals; iterative retrievals



Users

RAGSchema

Resources

Performance 

Pareto

Optimal 

system config

Optimizing:

RAGO for 

RAG serving

Task placement

Resource allocation

Batching policy

Bottleneck 

analysis

RAGO: Retrieval-Augmented Generation Optimizer

Inputs: RAGSchema + Hardware resources

Outputs: Optimal performance + System configurations

31



…

Rewrite Rerank + Prefix Decode

Retrieval …

……

CPU Server

1 2

3

CPU Server

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

…

RAGO system design space
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Task placement + Resource allocation + Batching

Both optimize Time-To-First-Token latency

Both are compute-intensive
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Task placement + Resource allocation + Batching

Time-To-First-Token latency

Compute-intensive

Time-Per-Output-Token latency

Memory-intensiveVS
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Task placement + Resource allocation + Batching

Workload and performance requirement per component
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Task placement + Resource allocation + Batching

Latency-Throughput trade-off



RAGO: cost-model-based system design space exploration

1. Inference cost model

2. Retrieval cost model

3. RAG cost assembler to evaluate end-to-end performance

a) Calculate performance Pareto per RAG component

b) Explore schedule combinations between components

Finding optimal schedules in RAGO

36

Well-tuned roofline models



Evaluation: performance of various schedules

Each curve is a resource allocation plan with various batch sizes:
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Naive plan: little resources for the small encoder

Long-context processing:

database encoder << LLM

RAGO: proper

resource allocation
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Time-To-First-Token (TTFT) Latency



Characterizing performance across RAG paradigms 

Drastically different performance characteristics

RAGSchema: RAG workload abstraction

Unified representation for various RAG algorithms

RAGO: cost-model-based performance optimization

Optimize placement, allocation, and batching policies

RAGO: 1st systematic RAG serving optimization

38
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Presentation Outline

Overview: ML system efficiency is beyond model acceleration

My research: cross-stack, vector-centric ML systems

RAGO: 1st systematic performance optimization for RAG

Efficiently serving diverse and evolving RAG algorithms

Chameleon: 1st heterogeneous accelerator system for RAG

Explore hardware specialization for vector search

Future work: next-generation machine learning systems

Spanning algorithms, databases, systems, and hardware
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Vector search: problem definition
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Vector search: problem definition
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Vector search: problem definition
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Vector search ≈ approximate nearest neighbor search

Inverted-file (IVF) index: 

prune the search space

Product quantization (PQ): 

lossy compression of vectors

IVF-PQ: a popular vector search algorithm in RAG



Ideal system: sufficient memory capacity + fast PQ decoding

 Decode: each byte code involves two fetch operations

CPU: too slow for PQ decoding

 Intensive table lookup operations overload the cache

 Low throughput of 1~1.5 GB/s per core

GPU: prohibitively expensive at scale

 Limited High-Bandwidth Memory (HBM) capacity

 Energy wasted by idle compute units

Large-scale vector search on existing systems

44
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Hardware specialization is increasingly popular

It’s time to think about retrieval acceleration



Requirement: fast inference + fast vector search 

Principle 1: accelerator heterogeneity

Inference accelerators + vector search accelerators

Proposed RAG system design principles

Requirement: accommodate diverse RAG algorithms

Principle 2: accelerator disaggregation

Handle various performance bottlenecks across RAGs 

46
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Chameleon: accelerator heterogeneity + disaggregation
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Chameleon: accelerator heterogeneity + disaggregation
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Chameleon: accelerator heterogeneity + disaggregation
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Chameleon: accelerator heterogeneity + disaggregation
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Chameleon: accelerator heterogeneity + disaggregation
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Chameleon: accelerator heterogeneity + disaggregation
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Chameleon: accelerator heterogeneity + disaggregation
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Chameleon: accelerator heterogeneity + disaggregation
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Chameleon: accelerator heterogeneity + disaggregation
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Chameleon: accelerator heterogeneity + disaggregation
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ChamVS: near-memory retrieval acceleration

Compared to CPUs: faster PQ decoding

Compared to GPUs: abundant capacity; lower latency
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ChamVS: near-memory retrieval acceleration

High throughput of one result distance per clock cycle

Parallel lookup Pipeline parallelism+

=

Parallel computation +

1

2

3

4

1 cycle
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ChamVS: near-memory retrieval acceleration

Now we have very fast PQ decoding: dozens of results per cycle

Challenge: inserting many distances into top-K queue per cycle
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ChamVS: near-memory retrieval acceleration

Question: how to reduce hardware resource consumption?

Systolic priority queue:

High throughput

one ingestion / two cycles

High resource consumption

queue length x queue num



Example: 16 queues to collect 100 nearest neighbors

Is it likely that all 100 results are located in one queue? 
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Approximate hierarchical priority queue

Finding: Most queues only contain less than 20 results

99.9% (k<20)
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Approximate hierarchical priority queue

10x resource saving without notable recall degrade

Idea: Truncate the queues significantly while achieving 

similar K-selection quality (e.g., 99% identical results)

Summary: Retrieval accelerator =

Fast PQ decoding + Efficient K-selection



63

Vector search performance and energy efficiency

Chameleon achieves up to 16.6x speedup over CPU baseline

Energy efficiency (Joule/query) is up to 26.2x better than CPU

End-to-end RAG speedup: 2.2x in latency and 3.2x in throughput

ChameleonBaselines



My research: next-generation ML infrastructure

Algorithm

& data
Systems

Hardware

[2]

[1,3]

[4-7]
[1] RAGO [ISCA’25]

[2] Chameleon [VLDB’25]

[3] PipeRAG [KDD’25]

[4] FANNS [SC’23]

[5] Falcon [VLDB’25 (revision)]

[6] SwiftSpatial [SIGMOD’25]

[7] MicroRec [MLSys’21]

[8] FleetRec [KDD’21]

64

[8]

Cross-stack design is the future:

Strong interplays between algorithm,

data, system, hardware, …

Only first-author papers are listed
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