
Wenqi Jiang

June 2025

Vector-Centric Machine Learning Systems:

A Cross-Stack Approach



2 x NVIDIA GTX 580 gaming GPUs

Each GPU: 3 GB memory,1.5 TFLOPs

Computing infrastructure drives AI advancement

2

2012



2 x GTX 580

1.5 TOPs / chip

60M parameters

Computing infrastructure drives AI advancement

3

2015 2018 20232012

103 per-chip performance x 104 chips = 107 improvement

25,000 x NVIDIA A100

1248 TOPs / chip

> 1T parameters

10 years



4

Tremendous investments on ML infrastructure

Sources: https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/

https://www.trendforce.com/presscenter/news/20250106-12433.html

Machine learning system efficiency matters!

https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://blogs.microsoft.com/on-the-issues/2025/01/03/the-golden-opportunity-for-american-ai/
https://www.trendforce.com/presscenter/news/20250106-12433.html
https://www.trendforce.com/presscenter/news/20250106-12433.html
https://www.trendforce.com/presscenter/news/20250106-12433.html


5

Presentation Outline

Overview: ML system efficiency is beyond model acceleration

My research: cross-stack, vector-centric ML systems

RAGO: 1st systematic performance optimization for RAG

Efficiently serving diverse and evolving RAG algorithms

Chameleon: 1st heterogeneous accelerator system for RAG

Explore hardware specialization for vector search

Future work: next-generation machine learning systems

Spanning algorithms, databases, systems, and hardware



What are Thomas Edison's 

most notable inventions?

These inventions, including the 

phonograph, the motion picture 

camera, and the electric …

User question:

Thomas invented 
phonograph, motion 
picture camera, …

LLM

Vector database

texts

vectors

Retrieval-augmented generation (RAG)

Key idea: pair LLMs with retrievals from external databases

6



What are Thomas Edison's 

most notable inventions?

These inventions, including the 

phonograph, the motion picture 

camera, and the electric …

User question:

Thomas invented 
phonograph, motion 
picture camera, …

LLM

Vector database

texts

vectors

Retrieval-augmented generation (RAG)

Key idea: pair LLMs with retrievals from external databases

7
Retrieval = Vector Search



What are Thomas Edison's 

most notable inventions?

These inventions, including the 

phonograph, the motion picture 

camera, and the electric …

User question:

Thomas invented 
phonograph, motion 
picture camera, …

LLM

Vector database

texts

vectors

Retrieval-augmented generation (RAG)

Key idea: pair LLMs with retrievals from external databases

8



What are Thomas Edison's 

most notable inventions?

These inventions, including the 

phonograph, the motion picture 

camera, and the electric …

User question:

Thomas invented 
phonograph, motion 
picture camera, …

LLM

Vector database

texts

vectors

Retrieval-augmented generation (RAG)

Key idea: pair LLMs with retrievals from external databases

9

Prompt = question + retrieved documents



What are Thomas Edison's 

most notable inventions?

These inventions, including the 

phonograph, the motion picture 

camera, and the electric …

User question:

Thomas invented 
phonograph, motion 
picture camera, …

LLM

Knowledge database

texts

vectors

Retrieval-augmented generation (RAG)

Less hallucination

Better personalization

Easier updates

Lower cost

10

RAG is becoming the industry standard

for reliable LLM serving



Retrieval-augmented generation (RAG)

11

Vector database and retrieval play a key role in the pipeline

Various RAG algorithms of drastically different workload

Multiple system components on heterogeneous hardware

What are Thomas Edison's 

most notable inventions?

These inventions, including the 

phonograph, the motion picture 

camera, and the electric …

User question:

Thomas invented 
phonograph, motion 
picture camera, …

LLM

Knowledge database

texts

vectors



Retrieval-augmented generation (RAG)

12

Vector database and retrieval play a key role in the pipeline

Various RAG algorithms of drastically different workload

Multiple system components on heterogeneous hardware

What are Thomas Edison's 

most notable inventions?

These inventions, including the 

phonograph, the motion picture 

camera, and the electric …

User question:

Thomas invented 
phonograph, motion 
picture camera, …

LLM

Knowledge database

texts

vectors

Cross-stack design is the future of ML systems

Algorithm, data, system, hardware, …



My research: cross-stack, vector-centric ML systems

Algorithm

& data
Systems

Hardware

[2]

[1,3]

[4-7] [1] RAGO [ISCA’25]

[2] Chameleon [VLDB’25]

[3] PipeRAG [KDD’25]

[4] FANNS [SC’23]

[5] Falcon [VLDB’25 (revision)]

[6] SwiftSpatial [SIGMOD’25]

[7] MicroRec [MLSys’21]

[8] FleetRec [KDD’21]

13

[8]

Cross-stack design is the future:

Algorithm, data, system, hardware, …

Only first-author papers are listed



My research: cross-stack, vector-centric ML systems

Only first-author papers are listed
14

Efficient Vector Search

Retrieval-Augmented Generation

Data Systems on Modern Hardware

RAGO [ISCA’25]

Chameleon [VLDB’25]

PipeRAG [KDD’25]

FANNS [SC’23]

Falcon [VLDB’25 (revision)]

SwiftSpatial [SIGMOD’25]

MicroRec [MLSys’21]

FleetRec [KDD’21]



My research: cross-stack, vector-centric ML systems

Only first-author papers are listed
15

Efficient Vector Search

Retrieval-Augmented Generation

Data Systems on Modern Hardware

RAGO [ISCA’25]

Chameleon [VLDB’25]

PipeRAG [KDD’25]

FANNS [SC’23]

Falcon [VLDB’25 (revision)]

SwiftSpatial [SIGMOD’25]

MicroRec [MLSys’21]

FleetRec [KDD’21]

System for algorithms



My research: cross-stack, vector-centric ML systems

Only first-author papers are listed
16

Efficient Vector Search

Retrieval-Augmented Generation

Data Systems on Modern Hardware

RAGO [ISCA’25]

Chameleon [VLDB’25]

PipeRAG [KDD’25]

FANNS [SC’23]

Falcon [VLDB’25 (revision)]

SwiftSpatial [SIGMOD’25]

MicroRec [MLSys’21]

FleetRec [KDD’21]

Hardware for ML and data systems



My research: cross-stack, vector-centric ML systems

Only first-author papers are listed
17

Efficient Vector Search

Retrieval-Augmented Generation

Data Systems on Modern Hardware

RAGO [ISCA’25]

Chameleon [VLDB’25]

PipeRAG [KDD’25]

FANNS [SC’23]

Falcon [VLDB’25 (revision)]

SwiftSpatial [SIGMOD’25]

MicroRec [MLSys’21]

FleetRec [KDD’21]

Algorithm for System Efficiency



My research: cross-stack, vector-centric ML systems

Only first-author papers are listed
18

Retrieval-Augmented Generation

RAGO [ISCA’25]

Chameleon [VLDB’25]

PipeRAG [KDD’25]

FANNS [SC’23]

Falcon [VLDB’25 (revision)]

Data Systems on Modern Hardware

SwiftSpatial [SIGMOD’25]

MicroRec [MLSys’21]

FleetRec [KDD’21]

Efficient Vector Search

Algorithm-Hardware Co-design



My research: cross-stack, vector-centric ML systems

Only first-author papers are listed
19

Efficient Vector Search

Data Systems on Modern Hardware

RAGO [ISCA’25]

Chameleon [VLDB’25]

PipeRAG [KDD’25]

FANNS [SC’23]

Falcon [VLDB’25 (revision)]

SwiftSpatial [SIGMOD’25]

MicroRec [MLSys’21]

FleetRec [KDD’21]

Retrieval-Augmented Generation

Hardware for ML and data systems



My research: cross-stack, vector-centric ML systems

Only first-author papers are listed
20

Efficient Vector Search

Data Systems on Modern Hardware

RAGO [ISCA’25]

Chameleon [VLDB’25]

PipeRAG [KDD’25]

FANNS [SC’23]

Falcon [VLDB’25 (revision)]

SwiftSpatial [SIGMOD’25]

MicroRec [MLSys’21]

FleetRec [KDD’21]

Retrieval-Augmented Generation

System-level

Hardware-level



Overview: ML system efficiency is beyond model acceleration

My research: cross-stack, vector-centric ML systems

RAGO: 1st systematic performance optimization for RAG

Efficiently serving diverse and evolving RAG algorithms

Chameleon: 1st heterogeneous accelerator system for RAG

Explore hardware specialization for vector search

Future work: next-generation machine learning systems

Spanning algorithms, databases, systems, and hardware

21

Presentation Outline



Optimizing RAG serving is challenging

Many RAG algorithm variants, no clear sign of convergence

22

Drastically different workload characteristics



Argument: Smaller model + hyper-scale retrieval = Larger model

10x model size saving given similar generation quality [1,2]

Case study 1: RAG with hyper-scale retrieval

[1] Borgeaud et al. “Improving Language Models by Retrieving from Trillions of Tokens”, 2022

[2] Wang et al. “InstructRetro: Instruction Tunning Post Retrieval-Augmented Retraining”, 2023

23

Retrieval
LLM

Prefix

LLM

Decode
Case 1:

Prompt computation (question + retrieved documents)Iterative token generationInternet-scale corpus with two trillion tokens according to DeepMind [1]



Case study 1: RAG with hyper-scale retrieval

RAG with smaller models achieve better QPS/chip than larger LLMs

10x size difference (RAG-8B vs LLM-70B) but only 1.5x speedup

1.5x

24

Time-To-First-Token (TTFT) Latency

Q
P

S
p

e
r

c
h

ip

T
h
ro

u
g

h
p

u
t

RAG overhead: (1) longer prompts and (2) hyper-scale retrieval



Case study 1: RAG with hyper-scale retrieval

25

Hyper-scale retrieval can be a major bottleneck

(2nd half of this talk addresses retrieval performance)



Answering questions of user-defined long context in real-time

Case study 2: RAG for long-context processing

[1] Lee et al. “Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?”, 2024

[2] Yue et al. “Inference Scaling for Long-Context Retrieval Augmented Generation”, 2024
26

Naive solution: include documents in the prompt (e.g., 1M tokens)

Possible but very costly, e.g., 60 USD / million token for GPT4

RAG solution: retrieve relevant passages

Significant lower cost with comparable quality [1,2]



Retrieval
LLM

Prefix

LLM

Decode

Database 

Encode
Case 2:

Divide the document into many passages

Encode each passage into a vector using a BERT-style model

Case study 2: RAG for long-context processing

Small model (e.g., 100M~1B) + small databases (1K~1M vectors)

[1] Lee et al. “Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?”, 2024

[2] Yue et al. “Inference Scaling for Long-Context Retrieval Augmented Generation”, 2024
27



28

Case study 2: RAG for long-context processing

Encoder (120M) << LLM (70B)

Encoder 500x smaller

Document lengths (tokens)

1M 10M100K

1. Even a small encoder model can become the bottleneck

2. Retrieval performance does not matter even with brute-force scan 

Drastically different workloads across RAG algorithms



Regular LLM serving

Retrieval
LLM

Prefix

LLM

Decode

Database 

Encode

Rewrite 

(prefix)
Rerank

Rewrite

(decode)

29

RAGSchema: workload abstraction for RAG algorithms

RAGSchema = Model components + Retrieval configurations

Optional models in addition to the main LLM



Regular LLM serving

Retrieval
LLM

Prefix

LLM

Decode

Database 

Encode

Rewrite 

(prefix)
Rerank

Rewrite

(decode)

30

RAGSchema: workload abstraction for RAG algorithms

RAGSchema = Model components + Retrieval configurations

Database sizes; multi-query retrievals; iterative retrievals



Users

RAGSchema

Resources

Performance 

Pareto

Optimal 

system config

Optimizing:

RAGO for 

RAG serving

Task placement

Resource allocation

Batching policy

Bottleneck 

analysis

RAGO: Retrieval-Augmented Generation Optimizer

Inputs: RAGSchema + Hardware resources

Outputs: Optimal performance + System configurations

31



…

Rewrite Rerank + Prefix Decode

Retrieval …

……

CPU Server

1 2

3

CPU Server

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

…

RAGO system design space

32

Task placement + Resource allocation + Batching

Both optimize Time-To-First-Token latency

Both are compute-intensive



…

Rewrite Rerank + Prefix Decode

Retrieval …

……

CPU Server

1 2

3

CPU Server

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

…

RAGO system design space

33

Task placement + Resource allocation + Batching

Time-To-First-Token latency

Compute-intensive

Time-Per-Output-Token latency

Memory-intensiveVS



…

Rewrite Rerank + Prefix Decode

Retrieval …

……

CPU Server

1 2

3

CPU Server

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

…

RAGO system design space

34

Task placement + Resource allocation + Batching

Workload and performance requirement per component



…

Rewrite Rerank + Prefix Decode

Retrieval …

……

CPU Server

1 2

3

CPU Server

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

A
c
c
e
l

…

RAGO system design space

35

Task placement + Resource allocation + Batching

Latency-Throughput trade-off



RAGO: cost-model-based system design space exploration

1. Inference cost model

2. Retrieval cost model

3. RAG cost assembler to evaluate end-to-end performance

a) Calculate performance Pareto per RAG component

b) Explore schedule combinations between components

Finding optimal schedules in RAGO

36

Well-tuned roofline models



Evaluation: performance of various schedules

Each curve is a resource allocation plan with various batch sizes:

37

Naive plan: little resources for the small encoder

Long-context processing:

database encoder << LLM

RAGO: proper

resource allocation

Q
P

S
p
e

r
c
h
ip

T
h
ro

u
g
h

p
u
t

Time-To-First-Token (TTFT) Latency



Characterizing performance across RAG paradigms 

Drastically different performance characteristics

RAGSchema: RAG workload abstraction

Unified representation for various RAG algorithms

RAGO: cost-model-based performance optimization

Optimize placement, allocation, and batching policies

RAGO: 1st systematic RAG serving optimization

38



39

Presentation Outline

Overview: ML system efficiency is beyond model acceleration

My research: cross-stack, vector-centric ML systems

RAGO: 1st systematic performance optimization for RAG

Efficiently serving diverse and evolving RAG algorithms

Chameleon: 1st heterogeneous accelerator system for RAG

Explore hardware specialization for vector search

Future work: next-generation machine learning systems

Spanning algorithms, databases, systems, and hardware



40

Vector search: problem definition



41

Vector search: problem definition



42

Vector search: problem definition



43

Vector search ≈ approximate nearest neighbor search

Inverted-file (IVF) index: 

prune the search space

Product quantization (PQ): 

lossy compression of vectors

IVF-PQ: a popular vector search algorithm in RAG



Ideal system: sufficient memory capacity + fast PQ decoding

 Decode: each byte code involves two fetch operations

CPU: too slow for PQ decoding

 Intensive table lookup operations overload the cache

 Low throughput of 1~1.5 GB/s per core

GPU: prohibitively expensive at scale

 Limited High-Bandwidth Memory (HBM) capacity

 Energy wasted by idle compute units

Large-scale vector search on existing systems

44



45

Hardware specialization is increasingly popular

It’s time to think about retrieval acceleration



Requirement: fast inference + fast vector search 

Principle 1: accelerator heterogeneity

Inference accelerators + vector search accelerators

Proposed RAG system design principles

Requirement: accommodate diverse RAG algorithms

Principle 2: accelerator disaggregation

Handle various performance bottlenecks across RAGs 

46



DRAM

DRAM

…

T
C

P
/I

P

FPGA-based Disaggregated Memory Node

ChamVS

Near-Memory 

Accelerator

6

GPU Process

…

Disaggregated Memory Node

Disaggregated Memory Node

ChamVS.mem

LLM

…

IVF Index

GPU Process

CPU 

Coordinator

ChamLM + ChamVS.idx

GPU Process

User questions

47

Chameleon: accelerator heterogeneity + disaggregation



DRAM

DRAM

…

T
C

P
/I

P

FPGA-based Disaggregated Memory Node

ChamVS

Near-Memory 

Accelerator

6

GPU Process

…

Disaggregated Memory Node

Disaggregated Memory Node

ChamVS.mem

LLM

…

IVF Index

GPU Process

CPU 

Coordinator

ChamLM + ChamVS.idx

GPU Process

User questions

48

Chameleon: accelerator heterogeneity + disaggregation



DRAM

DRAM

…

T
C

P
/I

P

FPGA-based Disaggregated Memory Node

ChamVS

Near-Memory 

Accelerator

6

GPU Process

…

Disaggregated Memory Node

Disaggregated Memory Node

ChamVS.mem

LLM

…

IVF Index

GPU Process

CPU 

Coordinator

ChamLM + ChamVS.idx

GPU Process

User questions

49

Chameleon: accelerator heterogeneity + disaggregation



DRAM

DRAM

…

T
C

P
/I

P

FPGA-based Disaggregated Memory Node

ChamVS

Near-Memory 

Accelerator

6

GPU Process

…

Disaggregated Memory Node

Disaggregated Memory Node

ChamVS.mem

LLM

…

IVF Index

GPU Process

CPU 

Coordinator

ChamLM + ChamVS.idx

GPU Process

User questions

50

Chameleon: accelerator heterogeneity + disaggregation



DRAM

DRAM

…

T
C

P
/I

P

FPGA-based Disaggregated Memory Node

ChamVS

Near-Memory 

Accelerator

6

GPU Process

…

Disaggregated Memory Node

Disaggregated Memory Node

ChamVS.mem

LLM

…

IVF Index

GPU Process

CPU 

Coordinator

ChamLM + ChamVS.idx

GPU Process

User questions

51

Chameleon: accelerator heterogeneity + disaggregation



DRAM

DRAM

…

T
C

P
/I

P

FPGA-based Disaggregated Memory Node

ChamVS

Near-Memory 

Accelerator

6

GPU Process

…

Disaggregated Memory Node

Disaggregated Memory Node

ChamVS.mem

LLM

…

IVF Index

GPU Process

CPU 

Coordinator

ChamLM + ChamVS.idx

GPU Process

User questions

52

Chameleon: accelerator heterogeneity + disaggregation



DRAM

DRAM

…

T
C

P
/I

P

FPGA-based Disaggregated Memory Node

ChamVS

Near-Memory 

Accelerator

6

GPU Process

…

Disaggregated Memory Node

Disaggregated Memory Node

ChamVS.mem

LLM

…

IVF Index

GPU Process

CPU 

Coordinator

ChamLM + ChamVS.idx

GPU Process

User questions

53

Chameleon: accelerator heterogeneity + disaggregation



DRAM

DRAM

…

T
C

P
/I

P

FPGA-based Disaggregated Memory Node

ChamVS

Near-Memory 

Accelerator

6

GPU Process

…

Disaggregated Memory Node

Disaggregated Memory Node

ChamVS.mem

LLM

…

IVF Index

GPU Process

CPU 

Coordinator

ChamLM + ChamVS.idx

GPU Process

User questions

54

Chameleon: accelerator heterogeneity + disaggregation



DRAM

DRAM

…

T
C

P
/I

P

FPGA-based Disaggregated Memory Node

ChamVS

Near-Memory 

Accelerator

6

GPU Process

…

Disaggregated Memory Node

Disaggregated Memory Node

ChamVS.mem

LLM

…

IVF Index

GPU Process

CPU 

Coordinator

ChamLM + ChamVS.idx

GPU Process

User questions

55

Chameleon: accelerator heterogeneity + disaggregation



DRAM

DRAM

…

T
C

P
/I

P

FPGA-based Disaggregated Memory Node

ChamVS

Near-Memory 

Accelerator

6

GPU Process

…

Disaggregated Memory Node

Disaggregated Memory Node

ChamVS.mem

LLM

…

IVF Index

GPU Process

CPU 

Coordinator

ChamLM + ChamVS.idx

GPU Process

User questions

56

Chameleon: accelerator heterogeneity + disaggregation



ChamVS Near-Memory Accelerator

N
e

tw
o

rk

DRAM

Channel 

FPGA

Board

DRAM

Channel 

T
C

P
/I

P
 N

e
tw

o
rk

 S
ta

c
k

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r

L
e

v
e

l-
2
 P

ri
o

ri
ty

 Q
u

e
u

e

Dist. Lookup Table Construct

…

PQ Decode
Level-1 Queue

Level-1 Queue

PQ Decode
Level-1 Queue

Level-1 Queue

PQ Decode
Level-1 Queue

Level-1 Queue

……

DRAM 

Channel

F
e

tc
h

 R
e

s
u

lt
 V

e
c

to
r 

ID
s

1
2

3
45

6

7

4

57

ChamVS: near-memory retrieval acceleration

Compared to CPUs: faster PQ decoding

Compared to GPUs: abundant capacity; lower latency



ChamVS Near-Memory Accelerator

N
e

tw
o

rk

DRAM

Channel 

FPGA

Board

DRAM

Channel 

T
C

P
/I

P
 N

e
tw

o
rk

 S
ta

c
k

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r

L
e

v
e

l-
2
 P

ri
o

ri
ty

 Q
u

e
u

e

Dist. Lookup Table Construct

…

PQ Decode
Level-1 Queue

Level-1 Queue

PQ Decode
Level-1 Queue

Level-1 Queue

PQ Decode
Level-1 Queue

Level-1 Queue

……

DRAM 

Channel

F
e

tc
h

 R
e

s
u

lt
 V

e
c

to
r 

ID
s

1
2

3
45

6

7

4

58

ChamVS: near-memory retrieval acceleration

High throughput of one result distance per clock cycle

Parallel lookup Pipeline parallelism+

=

Parallel computation +

1

2

3

4

1 cycle



ChamVS Near-Memory Accelerator

N
e

tw
o

rk

DRAM

Channel 

FPGA

Board

DRAM

Channel 

T
C

P
/I

P
 N

e
tw

o
rk

 S
ta

c
k

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r

L
e

v
e

l-
2
 P

ri
o

ri
ty

 Q
u

e
u

e

Dist. Lookup Table Construct

…

PQ Decode
Level-1 Queue

Level-1 Queue

PQ Decode
Level-1 Queue

Level-1 Queue

PQ Decode
Level-1 Queue

Level-1 Queue

……

DRAM 

Channel
F

e
tc

h
 R

e
s
u

lt
 V

e
c

to
r 

ID
s

1
2

3
45

6

7

4

59

ChamVS: near-memory retrieval acceleration

Now we have very fast PQ decoding: dozens of results per cycle

Challenge: inserting many distances into top-K queue per cycle



ChamVS Near-Memory Accelerator

N
e

tw
o

rk

DRAM

Channel 

FPGA

Board

DRAM

Channel 

T
C

P
/I

P
 N

e
tw

o
rk

 S
ta

c
k

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r

L
e

v
e

l-
2
 P

ri
o

ri
ty

 Q
u

e
u

e

Dist. Lookup Table Construct

…

PQ Decode
Level-1 Queue

Level-1 Queue

PQ Decode
Level-1 Queue

Level-1 Queue

PQ Decode
Level-1 Queue

Level-1 Queue

……

DRAM 

Channel

F
e

tc
h

 R
e

s
u

lt
 V

e
c

to
r 

ID
s

1
2

3
45

6

7

4

60

ChamVS: near-memory retrieval acceleration

Question: how to reduce hardware resource consumption?

Systolic priority queue:

High throughput

one ingestion / two cycles

High resource consumption

queue length x queue num



Example: 16 queues to collect 100 nearest neighbors

Is it likely that all 100 results are located in one queue? 

61

Approximate hierarchical priority queue

Finding: Most queues only contain less than 20 results

99.9% (k<20)



62

Approximate hierarchical priority queue

10x resource saving without notable recall degrade

Idea: Truncate the queues significantly while achieving 

similar K-selection quality (e.g., 99% identical results)

Summary: Retrieval accelerator =

Fast PQ decoding + Efficient K-selection



63

Vector search performance and energy efficiency

Chameleon achieves up to 16.6x speedup over CPU baseline

Energy efficiency (Joule/query) is up to 26.2x better than CPU

End-to-end RAG speedup: 2.2x in latency and 3.2x in throughput

ChameleonBaselines



My research: next-generation ML infrastructure

Algorithm

& data
Systems

Hardware

[2]

[1,3]

[4-7]
[1] RAGO [ISCA’25]

[2] Chameleon [VLDB’25]

[3] PipeRAG [KDD’25]

[4] FANNS [SC’23]

[5] Falcon [VLDB’25 (revision)]

[6] SwiftSpatial [SIGMOD’25]

[7] MicroRec [MLSys’21]

[8] FleetRec [KDD’21]

64

[8]

Cross-stack design is the future:

Strong interplays between algorithm,

data, system, hardware, …

Only first-author papers are listed


	Slide 1
	Slide 2: Computing infrastructure drives AI advancement
	Slide 3: Computing infrastructure drives AI advancement
	Slide 4: Tremendous investments on ML infrastructure
	Slide 5: Presentation Outline
	Slide 6: Retrieval-augmented generation (RAG)
	Slide 7: Retrieval-augmented generation (RAG)
	Slide 8: Retrieval-augmented generation (RAG)
	Slide 9: Retrieval-augmented generation (RAG)
	Slide 10: Retrieval-augmented generation (RAG)
	Slide 11: Retrieval-augmented generation (RAG)
	Slide 12: Retrieval-augmented generation (RAG)
	Slide 13: My research: cross-stack, vector-centric ML systems
	Slide 14: My research: cross-stack, vector-centric ML systems
	Slide 15: My research: cross-stack, vector-centric ML systems
	Slide 16: My research: cross-stack, vector-centric ML systems
	Slide 17: My research: cross-stack, vector-centric ML systems
	Slide 18: My research: cross-stack, vector-centric ML systems
	Slide 19: My research: cross-stack, vector-centric ML systems
	Slide 20: My research: cross-stack, vector-centric ML systems
	Slide 21: Presentation Outline
	Slide 22: Optimizing RAG serving is challenging
	Slide 23: Case study 1: RAG with hyper-scale retrieval
	Slide 24: Case study 1: RAG with hyper-scale retrieval
	Slide 25: Case study 1: RAG with hyper-scale retrieval
	Slide 26: Case study 2: RAG for long-context processing
	Slide 27: Case study 2: RAG for long-context processing
	Slide 28: Case study 2: RAG for long-context processing
	Slide 29: RAGSchema: workload abstraction for RAG algorithms
	Slide 30: RAGSchema: workload abstraction for RAG algorithms
	Slide 31: RAGO: Retrieval-Augmented Generation Optimizer
	Slide 32: RAGO system design space
	Slide 33: RAGO system design space
	Slide 34: RAGO system design space
	Slide 35: RAGO system design space
	Slide 36: Finding optimal schedules in RAGO
	Slide 37: Evaluation: performance of various schedules
	Slide 38: RAGO: 1st systematic RAG serving optimization
	Slide 39: Presentation Outline
	Slide 40: Vector search: problem definition
	Slide 41: Vector search: problem definition
	Slide 42: Vector search: problem definition
	Slide 43: Vector search ≈ approximate nearest neighbor search
	Slide 44: Large-scale vector search on existing systems
	Slide 45: Hardware specialization is increasingly popular
	Slide 46: Proposed RAG system design principles
	Slide 47: Chameleon: accelerator heterogeneity + disaggregation
	Slide 48: Chameleon: accelerator heterogeneity + disaggregation
	Slide 49: Chameleon: accelerator heterogeneity + disaggregation
	Slide 50: Chameleon: accelerator heterogeneity + disaggregation
	Slide 51: Chameleon: accelerator heterogeneity + disaggregation
	Slide 52: Chameleon: accelerator heterogeneity + disaggregation
	Slide 53: Chameleon: accelerator heterogeneity + disaggregation
	Slide 54: Chameleon: accelerator heterogeneity + disaggregation
	Slide 55: Chameleon: accelerator heterogeneity + disaggregation
	Slide 56: Chameleon: accelerator heterogeneity + disaggregation
	Slide 57: ChamVS: near-memory retrieval acceleration
	Slide 58: ChamVS: near-memory retrieval acceleration
	Slide 59: ChamVS: near-memory retrieval acceleration
	Slide 60: ChamVS: near-memory retrieval acceleration
	Slide 61: Approximate hierarchical priority queue
	Slide 62: Approximate hierarchical priority queue
	Slide 63: Vector search performance and energy efficiency
	Slide 64: My research: next-generation ML infrastructure
	Slide 65: Backup Slides
	Slide 66: Backup: Research Overview
	Slide 67: Presentation Outline
	Slide 68: Presentation Outline
	Slide 69: Presentation Outline
	Slide 70: Research: next-generation ML and data systems
	Slide 71: Research: next-generation ML and data systems
	Slide 72: Research: next-generation ML and data systems
	Slide 73: Backup: RAG Background
	Slide 74: Optimizing RAG serving is challenging
	Slide 75: Optimizing RAG serving is challenging
	Slide 76: Efficient RAG serving is important but challenging
	Slide 77: Backup: RAGO Case Studies
	Slide 78: Case studies of representative RAG workloads
	Slide 79: Case study setup
	Slide 80: Case study 1: RAG with hyper-scale retrieval
	Slide 81: Case study 3: RAG with iterative retrievals
	Slide 82: Workload characteristics of other RAG paradigms
	Slide 83: Workload characteristics of other RAG paradigms
	Slide 84: Workload characteristics of other RAG paradigms
	Slide 85: Case study 3: RAG with iterative retrieval
	Slide 86: Case study 3: RAG with iterative retrieval
	Slide 87: Case study 3: RAG with iterative retrieval
	Slide 88: Case study 3: RAG with iterative retrieval
	Slide 89: Case study 3: RAG with iterative retrieval
	Slide 90: Case Study 3: understanding idleness
	Slide 92: Case study 4: RAG with rewriter and reranker
	Slide 93: Case study 4: RAG with rewriter and reranker
	Slide 94: Case study 4: RAG with rewriter and reranker
	Slide 95: Backup: RAGO design decisions
	Slide 96: System design decisions for RAG serving
	Slide 97: System design decisions for RAG serving
	Slide 98: System design decisions for RAG serving
	Slide 99: System design decisions for RAG serving
	Slide 100: System design decisions for RAG serving
	Slide 101: System design decisions for RAG serving
	Slide 102: Batching policies in RAGO
	Slide 103: Collocation policies in RAGO
	Slide 104: Backup: RAGO Evaluation
	Slide 105: Case study setup
	Slide 106: Evaluation of various RAGO schedules
	Slide 107: Evaluation of RAGO schedules: end-to-end
	Slide 108: Evaluation of RAGO schedules: end-to-end
	Slide 109: Evaluation of RAGO schedules: task placement
	Slide 110: Case studies overview
	Slide 111: RAGO collocation sensitivity in case 2
	Slide 112: Evaluation of RAGO schedules: batching
	Slide 113: RAGO batching in Case 1
	Slide 114: RAGO batching in Case 4
	Slide 115: Backup: IVF-PQ
	Slide 116: Recap: Hyper-scale retrieval as the bottleneck
	Slide 117: IVF-PQ for large-scale ANNS
	Slide 118: Inverted-file (IVF) index
	Slide 119: Inverted-file (IVF) index
	Slide 120: Inverted-file (IVF) index
	Slide 121: Inverted-file (IVF) index
	Slide 122: Inverted-file (IVF) index
	Slide 123: Product quantization (PQ): training
	Slide 124: Product quantization (PQ): training
	Slide 125: Product quantization (PQ): training
	Slide 126: Product quantization (PQ): training
	Slide 127: Product quantization (PQ): searching
	Slide 128: Product quantization (PQ): searching
	Slide 129: Product quantization (PQ): searching
	Slide 130: Backup: Systolic Priority Queue
	Slide 131: ChamVS: near-memory retrieval acceleration
	Slide 132: Systolic priority queue for high-throughput insertion
	Slide 133: Systolic priority queue for high-throughput insertion
	Slide 134: Systolic priority queue for high-throughput insertion
	Slide 135: Systolic priority queue for high-throughput insertion
	Slide 136: Systolic priority queue for high-throughput insertion
	Slide 137: Systolic priority queue for high-throughput insertion
	Slide 138: Systolic priority queue for high-throughput insertion
	Slide 139: Systolic priority queue for high-throughput insertion
	Slide 140: Near-memory retrieval accelerator
	Slide 141: Backup: Chameleon Evaluation
	Slide 142: Evaluation settings
	Slide 143: Vector search performance
	Slide 144: Vector search performance
	Slide 145: Vector search performance
	Slide 146: End-to-end retrieval-augmented generation
	Slide 147: End-to-end retrieval-augmented generation
	Slide 148: Evaluation settings
	Slide 149: Evaluation settings: models 
	Slide 150: Evaluation settings: vector search
	Slide 151: Evaluation settings: hardware
	Slide 152: Evaluation settings: vector search combinations
	Slide 153: Vector search energy efficiency 
	Slide 154: Vector search scalability 
	Slide 155: End-to-end retrieval-augmented generation
	Slide 156: Vector search performance
	Slide 157: Vector Search Performance
	Slide 158: ChamVS vector search scalability 
	Slide 159: FPGA resource consumptions
	Slide 160: End-to-end RAG latency
	Slide 161: End-to-end RAG latency
	Slide 162: RAG Throughput - Large models
	Slide 163: RAG Throughput - Large models
	Slide 164: Performance bottlenecks vary across RAGs

