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Computing infrastructure drives Al advancement
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2 x NVIDIA GTX 580 gaming GPUs

Each GPU: 3 GB memory,1.5 TFLOPs



Computing infrastructure drives Al advancement

2 x GTX 580 25,000 x NVIDIA A100
1.5 TOPs / chip 10 years > 1248 TOPs / chip
60M parameters > 1T parameters

103 per-chip performance x 104 chips = 107 improvement
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Machine learning system efficiency matters!

According to figures from Taiwan-based market watcher TrendForce,

2025, adding up to about $298 billion.
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Presentation Outline

Overview: ML system efficiency is beyond model acceleration
My research: cross-stack, vector-centric ML systems

RAGO: 1st systematic performance optimization for RAG
Efficiently serving diverse and evolving RAG algorithms

Chameleon: 15t heterogeneous accelerator system for RAG
Explore hardware specialization for vector search

Future work: next-generation machine learning systems
Spanning algorithms, databases, systems, and hardware



Retrieval-augmented generation (RAG)

Key idea: pair LLMs with retrievals from external databases

é o ] )
g2n User question:

Thomas invented
»! phonograph, motion
picture camera, ...

What are Thomas Edison's o\
most notable inventions? LLM 0)?7

Q x )
( )
Vector database

_\,_ These inventions, including the
texts g phonograph, the motion picture
S =) vectors camera, and the electric ...

J

4
£




Retrieval-augmented generation (RAG)

Key idea: pair LLMs with retrievals from external databases
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Retrieval-augmented generation (RAG)

Key idea: pair LLMs with retrievals from external databases
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Retrieval-augmented generation (RAG)

Key idea: pair LLMs with retrievals from external databases

Prompt = question + retrieved documents
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Retrieval-augmented generation (RAG)

25 User question:

most notable inventions?

v

What are Thomas Edison's LIM &}

Thomas invented
—| phonograph, motion

y> picture camera, ...

g3 Less hallucination

ﬁ Better personalization
ﬁ Easier updates

RAG is becoming the industry standard
G for reliable LLM serving

Applications for Produc

AWS > Documentation » Amazon SageMaker » Developer Guide

Retrieval Augmented Generation

( < PDF ) ( 4 Rss ) (P Focus mode

Foundation models are usually trained offline, making the model agnostic to any data that is created after the model was
trained. Additionally, foundation models are traine

d on very general domain corpora, making them less effective for

10



Retrieval-augmented generation (RAG)
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Vector database and retrieval play a key role in the pipeline

Various RAG algorithms of drastically different workload

Multiple system components on heterogeneous hardware
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Retrieval-augmented generation (RAG)

&5 User question:

What are Thomas Edison's

Thomas invented
phonograph, motion

Cross-stack design is the future of ML systems

Algorithm, data, system, hardware, ...

Vector database and retrieval play a key role in the pipeline

Various RAG algorithms of drastically different workload

Multiple system components on heterogeneous hardware
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My research: cross-stack, vector-centric ML systems

[1,3]

Algorithm Systems Cross-stack design is the future:
& data Algorithm, data, system, hardware, ...
[2]
[4-7] [8] [1] RAGO [ISCA25] [5] Falcon [VLDB’25 (revision)]
[2] Chameleon [VLDB'25]  [6] SwiftSpatial [SIGMOD’25]
[3] PipeRAG [KDD’25] [7] MicroRec [MLSys’21]
Hardware [4] FANNS [SC'23] [8] FleetRec [KDD'21]

Only first-author papers are listed .



My research: cross-stack, vector-centric ML systems
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My research: cross-sta : systems
System for algorithms
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My research: cross-stack, vector-centric ML systems

Hardware for ML and data systems
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My research: cross-stack, vector-centric ML systems
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My research: cross-stack, vector-centric ML systems
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My research: cross-stack, vector-centric ML systems
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My research: cross-stack, ie M] systems
System-level
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Presentation Outline

Overview: ML system efficiency is beyond model acceleration
My research: cross-stack, vector-centric ML systems

RAGO: 1st systematic performance optimization for RAG
Efficiently serving diverse and evolving RAG algorithms

Chameleon: 15t heterogeneous accelerator system for RAG
Explore hardware specialization for vector search

Future work: next-generation machine learning systems
Spanning algorithms, databases, systems, and hardware
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Optimizing RAG serving is challenging

Many RAG algorithm variants, no clear sign of convergence
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Case study 1: RAG with hyper-scale retrieval

Argument: Smaller model + hyper-scale retrieval = Larger model

10x model size saving given similar generation quality [1,2]

Retrieval > — > -
Prefix Decode

— ] /\

Internet-scale corpus with two trillion tokens according to DeepMind [1]

[1] Borgeaud et al. “Improving Language Models by Retrieving from Trillions of Tokens”, 2022
[2] Wang et al. “InstructRetro: Instruction Tunning Post Retrieval-Augmented Retraining”, 2023
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Case study 1: RAG with hyper-scale retrieval

RAG with smaller models achieve better QPS/chip than larger LLMs
10x size difference (RAG-8B vs LLM-70B) but only 1.5x speedup

—eo— RAG 8B -#- LLM-only 70B

20 -
2 =
N el <
o Q
o L
Q %’10—
¢ £
C 0~

| | | | |
0.00 0.01 0.02 0.03 0.04 0.05

RAG overhead: (1) longer prompts and (2) hyper-scale retrieval
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Case study 1: RAG with hyper-scale retrieval

8B LLM + large-scale retrieval
100 mE — —_—

1 query 2 queries 4 queries 8 queries

Hyper-scale retrieval can be a major bottleneck

(2"d half of this talk addresses retrieval performance)




Case study 2: RAG for long-context processing

Answering questions of user-defined long context in real-time

( 2 |
' = Q

|11

=

Naive solution: include documents in the prompt (e.g., 1M tokens)

Possible but very costly, e.g., 60 USD / million token for GPT4

RAG solution: retrieve relevant passages

Significant lower cost with comparable quality [1,2]

[1] Lee et al. “Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?”, 2024

[2] Yue et al. “Inference Scaling for Long-Context Retrieval Augmented Generation”, 2024
26



Case study 2: RAG for long-context processing

Divide the document into many passages

Encode each passage into a vector using a BERT-style model

Database LLM LLM

Encode >| Retrieval Prefix Decode

Small model (e.g., 100M~1B) + small databases (1K~1M vectors)

[1] Lee et al. “Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?”, 2024

[2] Yue et al. “Inference Scaling for Long-Context Retrieval Augmented Generation”, 2024
27



Case study 2: RAG for long-context processing

Encoder (120M) << LLM (70B)

Encoder 500x smaller

Drastically different workloads across RAG algorithms

Document lengths (tokens)

1. Even a small encoder model can become the bottleneck

2. Retrieval performance does not matter even with brute-force scan




RAGSchema: workload abstraction for RAG algorithms

RAGSchema = Model components + Retrieval configurations

l * Regular LLM serving
N\
Database Rewrite Rewrite : LLM LLM
Encode g (prefix) B (decode) - Retrleval+ Rerank > Prefix g Decode
J

Optional models in addition to the main LLM

29



RAGSchema: workload abstraction for RAG algorithms

RAGSchema = Model components + Retrieval configurations

l

* Regular LLM serving

Database
Encode

Rewrite
(prefix)

Rewrite
(decode)

Rerank

LLM
Prefix

N\

_—

LLM
Decode

Database sizes; multi-query retrievals; iterative retrievals

30



RAGO: Retrieval-Augmented Generation Optimizer

Inputs: RAGSchema + Hardware resources

Outputs: Optimal performance + System configurations

N — S
|
| —
| —— Ia.: —F: RAGO for Performance
_J = ! RAG serving Pareto
0.0 ' |
® | RAGSchema Optimizing:
| .
Fan_ | ,
|

analysis

U ¢y Task placement
sers —— —T
l | 7¥ Resource allocation

I Resources : {¥ Batching policy

Optimal
system config

. Bottleneck
~y




RAGO system design space

Task placement + Resource allocation + Batching
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: Both optimize Time-To-First-Token latency !
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RAGO system design space

Task placement + Resource allocation + Batching

7~

Y a4 Y
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K Rewrite L Rerank + Prefix L Decode
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l I | '© : |
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Time-To-First-Token latency
Compute-intensive

Time-Per-Output-Token latency
Memory-intensive




RAGO system design space

Resource allocation

2\?‘ Workload and performance requirement per component
e e e ~ Y 3\
| I | : |
' o ol 1|o| | [ O® |3 T | |
'l 3 sl 1| 3| |3 S| >3 S|
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RAGO system design space

Batching
o\ . o\
& Rewrite & Relfalﬂk+| Latency-Throughput trade-off
—— T ~ ——_—— - wininininininis S
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Finding optimal schedules in RAGO

RAGO: cost-model-based system design space exploration

1. Inference cost model

} Well-tuned roofline models
2. Retrieval cost model

3. RAG cost assembler to evaluate end-to-end performance
a) Calculate performance Pareto per RAG component

b) Explore schedule combinations between components

36



Evaluation: performance of various schedules

Each curve is a resource allocation plan with various batch sizes:

RAGO: proper

“ resource allocation

64.1x ] Long-context processing:

database encoder << LLM

QPS per chip
Throughput

Time-To-First-Token (TTFT) Latency

Naive plan: little resources for the small encoder
37



RAGO: 1st systematic RAG serving optimization

Characterizing performance across RAG paradigms

Drastically different performance characteristics

RAGSchema: RAG workload abstraction

Unified representation for various RAG algorithms

RAGO: cost-model-based performance optimization

Optimize placement, allocation, and batching policies

38



Presentation Outline

Overview: ML system efficiency is beyond model acceleration
My research: cross-stack, vector-centric ML systems

RAGO: 1st systematic performance optimization for RAG
Efficiently serving diverse and evolving RAG algorithms

Chameleon: 15t heterogeneous accelerator system for RAG
Explore hardware specialization for vector search

Future work: next-generation machine learning systems
Spanning algorithms, databases, systems, and hardware
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Vector search: problem definition
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Vector search: problem definition

o
. . . . o o .
0 o 0 o

query vector _ _e o : ® o

® L = *. ®

o O

. ° o %o o o o A

o o © . @ .
o ®

o o ® database vectors
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Vector search: problem definition

@ return region
/I o o

database vectors
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Vector search = approximate nearest neighbor search

IVF-PQ: a popular vector search algorithm in RAG

Inverted-file (IVF) index: Product quantization (PQ):
prune the search space lossy compression of vectors
query
| d dappr?x | |
N , h ——)e - e - — — e — — e — — -
o™ 7% 1 T
O
e T vt chi St
Bl Ak Sk S S
S SE R Shhi St S
database Sy ap ag ay

vectors :
raw vectors @ quantized vectors
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Large-scale vector search on existing systems

Ideal system: sufficient memory capacity + fast PQ decoding
Decode: each byte code involves two fetch operations

CPU: too slow for PQ decoding @
Intensive table lookup operations overload the cache

Low throughput of 1~1.5 GB/s per core

GPU: prohibitively expensive at scale &

Limited High-Bandwidth Memory (HBM) capacity

Energy wasted by idle compute units

44



Hardware specialization is increasingly popular

Compute

Announcing Trillium, the sixth generation of
Google Cloud TPU

Yy

It’s time to think about retrieval acceleration
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Proposed RAG system design principles

Reqguirement: fast inference + fast vector search
Principle 1: accelerator heterogeneity

Inference accelerators + vector search accelerators

Reguirement: accommodate diverse RAG algorithms
Principle 2: accelerator disaggregation

Handle various performance bottlenecks across RAGs
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Chameleon: accelerator heterogeneity + disaggregation

ChamVS.mem

FPGA-based Disaggregated Memory Node

( )

@ ChamVs

Near-Memory K=

Accelerator

[+]

/

L

« = User questions

\“:j“““

GPU Process
CPU

4/:/ Coordinator
Disaggregated Memory Node - GPU Process

GPU Process

Disaggregated Memory Node |

—-— e e e e e e e s e s e e e e e e e e = ey,
S PRGNS S S ———
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Chameleon: accelerator heterogeneity + disaggregation

ChamLM + ChamVS.idx

<« = User questions ) -
N 00,
b\
LLM IVF Index

GPU Process

CPU
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Chameleon: accelerator heterogeneity + disaggregation
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Chameleon: accelerator heterogeneity + disaggregation
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Chameleon: accelerator heterogeneity + disaggregation
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Chameleon: accelerator heterogeneity + disaggregation
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Chameleon: accelerator heterogeneity + disaggregation
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Chameleon: accelerator heterogeneity + disaggregation
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Chameleon: accelerator heterogeneity + disaggregation
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ChamVS: near-memory retrieval acceleration
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Compared to CPUs: faster PQ decoding

Compared to GPUs: abundant capacity; lower latency



ChamVsS: near-memory retrieval acceleration

m-byte PQ codes
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One column of the

Parallel lookup + Parallel computation + Pipeline parallelism

High throughput of one result distance per clock cycle
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ChamVS: near-memory retrieval acceleration
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Now we have very fast PQ decoding: dozens of results per cycle

Challenge: inserting many distances into top-K queue per cycle
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ChamVS: near-memory retrieval acceleration

Systolic priority queue:
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Question: how to reduce hardware resource consumption?
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Approximate hierarchical priority queue

Example: 16 queues to collect 100 nearest neighbors

Is it likely that all 100 results are located in one queue?

~1.0

0.15+~ I
< 0.10 - e
S (1) X
= 99.9% (k<20) 0.5 9

0.05 - l

0.00 - I I \ , - : I;O.O

0 20 40 60 80 100

Finding: Most queues only contain less than 20 results
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Approximate hierarchical priority queue

Idea: Truncate the queues significantly while achieving
similar K-selection quality (e.g., 99% identical results)

gueue

Summary: Retrieval accelerator =
Fast PQ decoding + Efficient K-selection

Min length
10X

per L1

"0 5 10 15 20 25 30
Number of L1 queues

10x resource saving without notable recall degrade
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Vector search performance and energy efficiency

Baselines = 1rrGAsCRy Chameleon

Dataset: SIFT <O O

BD) ea, i

z . -

1 4 16 64
Batch size

—
o
Lo

-

—

Latency (ms)
S,

Chameleon achieves up to 16.6x speedup over CPU baseline

Energy efficiency (Joule/query) is up to 26.2x better than CPU
End-to-end RAG speedup: 2.2x in latency and 3.2x in throughput
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My research: next-generation ML infrastructure

- [1,3] Cross-stack design is the future:
Algorithm Systems | g |
& data Strong interplays between algorithm,
[2] data, system, hardware, ...
[4-7] [8] | | -
[1] RAGO [ISCA25] [5] Falcon [VLDB’25 (revision)]
[2] Chameleon [VLDB'25] [6] SwiftSpatial [SIGMOD’25]
[3] PipeRAG [KDD'25] [7] MicroRec [MLSys'21]
Hardware

[4] FANNS [SC'23] [8] FleetRec [KDD’21]

Only first-author papers are listed »
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