
Chameleon: a Heterogeneous and Disaggregated Accelerator
System for Retrieval-Augmented Language Models
Wenqi Jiang

Systems Group, ETH Zurich
wenqi.jiang@inf.ethz.ch

Marco Zeller
Systems Group, ETH Zurich
mzeller@student.ethz.ch

Roger Waleffe
University of Wisconsin Madison

waleffe@wisc.edu

Torsten Hoefler
SPCL, ETH Zurich

torsten.hoefler@inf.ethz.ch

Gustavo Alonso
Systems Group, ETH Zurich

alonso@inf.ethz.ch

ABSTRACT
A Retrieval-Augmented Language Model (RALM) combines a large
language model (LLM) with a vector database to retrieve context-
specific knowledge during text generation. This strategy facilitates
impressive generation quality even with smaller models, thus re-
ducing computational demands by orders of magnitude. To serve
RALMs efficiently and flexibly, we propose Chameleon, a heteroge-
neous accelerator system integrating both LLM and vector search
accelerators in a disaggregated architecture. The heterogeneity en-
sures efficient serving for both inference and retrieval, while the
disaggregation allows independent scaling of LLM and vector search
accelerators to fulfill diverse RALM requirements. Our Chameleon
prototype implements vector search accelerators on FPGAs and
assigns LLM inference to GPUs, with CPUs as cluster coordina-
tors. Evaluated on various RALMs, Chameleon exhibits up to 2.16×
reduction in latency and 3.18× speedup in throughput compared
to the hybrid CPU-GPU architecture. The promising results pave
the way for adopting heterogeneous accelerators for not only LLM
inference but also vector search in future RALM systems.

PVLDB Reference Format:
Wenqi Jiang, Marco Zeller, Roger Waleffe, Torsten Hoefler, and Gustavo
Alonso. Chameleon: a Heterogeneous and Disaggregated Accelerator
System for Retrieval-Augmented Language Models. PVLDB, 18(1): 42 - 52,
2024.
doi:10.14778/3696435.3696439

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/fpgasystems/Chameleon-RAG-Acceleration.

1 INTRODUCTION
Vector databases facilitate the development of Retrieval-Augmented
Language Models (RALMs), an increasingly popular approach to
serve generative large language models (LLMs). The architecture of
RALM, as shown in Figure 1, allows the LLM to focus on learning
linguistic structures, while incorporating context-specific knowl-
edge during inference. Specifically, the external textual knowledge

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 1 ISSN 2150-8097.
doi:10.14778/3696435.3696439

John von Neumann was _

Large Language
Model (LLM)

context vector

John von Neumann was
known for his scientific
contributions in computer
science, mathematics, …

Generation:

External Knowledge Retrieval
database
vectors

nearest
neighbor
vector IDs

Text
Store

Vector
Search

raw texts

raw
texts

retrieved texts

Neumann
illuminated
the fields of
mathematics,
computer
science, …

Prompt (context):
1

2
3

4

5

6

7

Figure 1: A retrieval-augmented language model (RALM).

is encoded as vectors using LLMs and stored in a vector database.
Given an inference context (e.g., a prompt), the knowledge retriever
identifies relevant knowledge in the database via vector search,
which assesses relevance by computing the similarity between the
context vector and the database vectors. The retrieved texts are then
incorporated into the LLM to facilitate high-quality generation.

RALMs show three major advantages over conventional LLMs.
First of all, RALMs, even using smaller LLMs with one to two orders
of magnitude fewer parameters, can match or surpass the gener-
ation quality of conventional LLMs on various tasks [23, 31, 41–
43, 48, 49], thus significantly lowering the inference cost. This is
because conventional LLMs rely on a vast number of parameters
trained on massive datasets to capture and retain textual knowl-
edge [8, 12, 67, 74], while RALMs can integrate retrieved knowledge
during inference, not burdening the LLM’s parameters. Moreover,
knowledge editing in RALMs is as straightforward as updating the
database, enabling efficient integration of new or private knowl-
edge [3, 4]. In contrast, updating knowledge in conventional LLMs
is inflexible, requiring additional training [7, 49]. Finally, RALMs
enhance the reliability and interpretability of generated content by
sourcing knowledge externally, while conventional LLMs are prone
to producing non-factual content, known as hallucination [49, 50].

Despite its advantages, efficient RALM inference presents two
challenges. First, the workload characteristics of the LLM and the
retriever are distinct.While the LLM inference primarily relies on
rapid tensor operations, the vector search system — often utilizing
fast and memory-efficient search algorithms like Product Quantiza-
tion (PQ) [35] — demands both substantial memory capacity to hold
the vectors and fast processing of quantized database vectors during
query time. Second, the diverse range of RALM configurations leads to
shifting system requirements and bottlenecks. Regarding retrieval fre-
quency, some models retrieve once per generated token [6, 42, 57],
while others retrieve only once per entire sequence [31, 49]. In

https://doi.org/10.14778/3696435.3696439
https://github.com/fpgasystems/Chameleon-RAG-Acceleration
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3696435.3696439

terms of scale, database sizes vary from millions [24, 49] to tens
of billions of vectors (92 TB) [7, 76], and model sizes range from
hundreds of millions [24, 48] to tens of billions of parameters [76].

We envision a high-performance and efficient RALM system to
adhere to two key design principles to address the two aforemen-
tioned challenges. Firstly, RALMs should incorporate heterogeneous
accelerators, employing not only inference accelerators such as GPUs
but also vector search accelerators, such that both RALM components
are fast and efficient. Secondly, the heterogeneous accelerators should
be disaggregated to support diverse RALM demands efficiently, in
contrast to a monolithic approach where a fixed number of LLM
and retrieval accelerators reside on the same server. The rationale is
twofold: (a) performance bottlenecks shift between various RALMs
of different retrieval frequencies, database sizes, and model sizes,
thus requiring a case-specific optimal balance between the two
types of accelerators; and (b) a huge database (e.g., with tens of TBs
of vectors [7, 76]) may necessitate more retrieval accelerators than
a single server can accommodate.

To materialize this vision, we propose Chameleon, a heteroge-
neous and disaggregated accelerator system for efficient, flexible,
and high-performance RALM inference. Chameleon consists of
three primary components. Firstly, ChamVS is a distributed and
accelerated vector search engine. It consists of several disaggre-
gated memory nodes, each containing a shard of quantized database
vectors in DRAM, a near-memory retrieval accelerator prototyped
on FPGA, and a hardware TCP/IP stack. Secondly, ChamLM is a
multi-GPU LLM inference engine. It produces query vectors and
generates texts using the retrieved information. Lastly, a CPU coor-
dinator server orchestrates the network communication between
the retrieval and LLM accelerators.

We evaluate Chameleon with various LLM architectures, model
sizes, database sizes, and retrieval frequencies. For large-scale vec-
tor search, ChamVS achieves up to 23.72× latency reduction com-
pared to the optimized CPU baselines while consuming 5.8∼26.2×
less energy. For RALM inference, Chameleon achieves up to 2.16×
and 3.18× speedup in latency and throughput compared to the hy-
brid CPU-GPU architecture. We further illustrate that the optimal
balance between the two types of accelerators varies significantly
across different RALMs, making disaggregation essential for achiev-
ing both flexibility and high accelerator utilization rates.

The paper makes the following contributions:
• We present Chameleon, an efficient RALM inference system

designed around two proposed principles: accelerator hetero-
geneity and disaggregation.

• We design and implement ChamVS, a distributed engine for
large-scale vector search, which includes:
– Near-memory accelerators for vector search, including a

novel resource-efficient top-K selection architecture.
– A GPU-based index scanner to prune search space.

• We evaluate Chameleon on various RALMs and showcase its
remarkable performance and efficiency.

2 BACKGROUND AND MOTIVATION
2.1 Retrieval-Augmented Language Models
A RALM combines an LLM [16, 66, 68] with a vector database.
During inference, information relevant to the current context is

retrieved from the database and utilized by the LLM to predict
subsequent tokens. We classify RALMs by the content they retrieve:

The first category of RALMs retrieves text chunks containing
multiple tokens related to the current context [7, 31, 39, 49, 70].
During inference, the generation context, such as a user’s prompt, is
encoded as a query vector to retrieve context-related knowledge, i.e.,
text chunks in the database with similar vector representations [7,
32, 49]. The retrieved text chunks are then integrated by the LLM,
leading to the generation of output tokens. When generating long
sequences, however, the generated content may gradually diverge
from the initially retrieved contents. Thus, instead of initiating
retrieval only once at the beginning [31, 49, 72], an effective strategy
is to perform multiple retrievals during text generation to improve
token generation quality [70], for instance, at a regular interval of
every 8∼64 generated tokens [7, 39, 70].

The second category of RALMs retrieves only the next token
of each similar context in the database [6, 42, 57]. At each step of
token generation (retrieval interval is one), the last layer’s hidden
state serves as the query to retrieve similar contexts and the next
token of each similar context [42, 57, 82]. The next token of the
current context is then predicted by interpolating the next-token
probability distribution predicted by the model with that of the
retrieved content [41, 42].

2.2 Large-Scale Vector Search
A vector search takes a 𝐷-dimensional query vector 𝑥 as input and
retrieves 𝐾 similar vector(s) from a database 𝑌 , populated with
many 𝐷-dimensional vectors, based on metrics like L2 distances
or cosine similarity. Exact 𝐾 nearest neighbor (KNN) search can
be prohibitively expensive for large datasets, requiring a linear
scan through all database vectors. Thus, real-world vector search
systems adopt approximate nearest neighbor (ANN) search that
can achieve much higher system performance. The quality of an
ANN search is measured by the recall at 𝐾 (𝑅@𝐾), which denotes
the overlap percentage between the exact 𝐾 nearest neighbors and
the 𝐾 returned by the ANN. In the subsequent sections, we will use
the terms vector search and ANN search interchangeably.

IVF-PQ, combining the inverted-file (IVF) index and product
quantization (PQ), is among the most popular vector search algo-
rithms in RALMs [7, 31, 42, 49]. Its more frequent adoption over
other ANN algorithms like graph-based vector search [17, 18, 53,
55, 56, 91, 94] is primarily due to memory efficiency: RALMs can
involve large databases, with reported sizes reaching up to 30 billion
vectors (92 TB) [7, 76], thus the high compression ratio offered by
PQ [20, 35, 40] is essential.

Inverted-File (IVF) Index. An IVF index divides a vector
dataset 𝑌 into many (nlist) disjoint subsets, typically using cluster-
ing algorithms like K-means. Each of these subsets is termed an
IVF list. At query time, the IVF index is scanned, and only a select
few (nprobe) IVF lists whose cluster centroids are close to the query
vector are scanned, such that the search space is effectively pruned.

Product Quantization (PQ). PQ reduces memory usage and
computations of vector search by compressing each database vector
into𝑚-byte PQ codes. Figure 2 overviews the workflow of PQ.

Training (quantization). All database vectors are partitioned
evenly into𝑚 sub-vectors 1 , which possess a dimensionality of

Training (Quantization)

Searching (Decoding)

3

q

y0 = [11.3, -7.2, …, 25.9]

yN-1 = [-11.7, 0.2, …, -6.3]

…

Original database vectors Database sub-vectors

Sub-vector centroidsQuantized vectors: PQ codes

N N

MN

C

Query vector

Query sub-vectors

Distance lookup table

D D*=D/m

y0,0 y0,1 y0,D*-1
…

…
yN-1,0 yN-1,1 yN-1,D*-1

…

1

c0,0 c0,1 c0,D*-1
…

…
cM-1,0 cM-1,1 cM-1,D*-1

…

17 89 255…
…

55 181 26…

2

3

D*=D/m

d0,0 d0,1 d0,D*-1
…

…
dN-1,0 dN-1,1 dN-1,D*-1

…

D*=D/m

q0 q1 qD*-1…
5

4

6

scalar

5

Figure 2: Product quantization (PQ) for vector search.

𝐷∗ = 𝐷
𝑚 , typically ranging from 4 to 16 in practice. A clustering

algorithm is performed in each sub-space 2 to obtain a list of cen-
troids 𝑐 , allowing each database sub-vector to be approximated by
its nearest centroid. Typically, the number of clusters per sub-space
is set as 𝑀 = 256, such that a cluster ID can be represented with
one byte. Thus, once the cluster centroids are stored, each database
vector can be represented by𝑚-byte PQ codes.

Searching (decoding). A query vector is compared against the
quantized database vectors. The distance computation can be for-
mulated as 𝑑 (𝑥,𝑦) = 𝑑 (𝑥, 𝑐 (𝑦)) = ∑𝑚

𝑖=1 𝑑 (𝑥𝑖 , 𝑐𝑖 (𝑦𝑖)), where 𝑑 (𝑥,𝑦)
is the approximate distance between a query vector 𝑥 and a quan-
tized database vector 𝑦, and 𝑐 (𝑦) is the reconstructed database
vector using the PQ codes and the cluster centroid vectors per sub-
space. To calculate 𝑑 (𝑥,𝑦), the query vector is divided into𝑚 sub-
vectors (𝑥𝑖) 4 and compared against the reconstructed quantized
sub-database-vectors 𝑐𝑖 (𝑦𝑖). To speed up distance computations
given many database vectors, a distance lookup table 5 can be
constructed and reused within a query, encompassing all combi-
nations between a sub-query-vector and a cluster centroid within
the same sub-space. With this table, the value of 𝑑 (𝑥𝑖 , 𝑐𝑖 (𝑦𝑖)) can
be swiftly retrieved by looking up the table with the PQ code as
the address 6 , leading to improved computational efficiency.

2.3 Motivation: Efficient RALM Inference
An efficient RALM inference engine should meet the following
system requirements:
• Both the LLM inference and the large-scale vector search com-

ponents should be fast and resource-efficient.
• The system should be flexible enough to accommodate diverse

RALM configurations, spanning various combinations model
sizes, database sizes, and retrieval frequencies.
However, little effort has been devoted to developing efficient

RALM systems that meet the above requirements. This is likely
because RALM has been an emerging topic within the machine
learning community [7, 31, 32, 42, 49], with their prototype imple-
mentations exhibiting the following problems:

(P1) Each research RALM system focuses on being able to run
one or a small number of RALM models, paying little attention to
latency, throughput, resource efficiency, and system flexibility.

(P2)While hardware accelerators for LLMs, such as GPUs, are
advancing rapidly, less attention has been paid to the vector search

aspect, which, as our evaluations will demonstrate, can become the
performance bottleneck in RALM inference.

(P2.1)CPUs are slow in scanning PQ codes during query time 6 .
This is due to the frequent cache accesses (for each byte of PQ code,
load the code and use it as an address to load a distance) and the
instruction dependencies between operations (distance lookups
depend on PQ codes and distance accumulations depend on the
lookup values). Even with the state-of-the-art SIMD-optimized CPU
implementation [1], the throughput peaks at roughly 1 GB/s per
core when scanning PQ codes (1.2 GB/s on Intel Xeon Platinum
8259CL @ 2.50GHz). Within a CPU-memory-balanced server, the
PQ code scanning process significantly underutilizes the available
memory bandwidth, as about 16 cores are required to saturate the
bandwidth of a single memory channel (around 20 GB/s).

(P2.2) GPUs suffer from two major limitations for large-scale
vector search. Firstly, the limited memory capacity of each GPU
makes large-scale searches on GPU clusters cost-prohibitive. For
instance, accommodating only 1 TB of PQ codes necessitates at
least 16 NVIDIA A100 GPUs (cost 300K USD as of March 2024),
each with 80 GB of memory, given that a portion of memory should
be reserved for intermediate search states. Although an alterna-
tive solution is to adopt a hybrid CPU-GPU architecture where
the GPU fetches vectors from CPU’s memory, the inter-processor
bandwidth is way lower than the GPU memory bandwidth. Even
for NVIDIA Grace Hopper, with the latest high-performance CPU-
GPU interconnect, the single-direction bandwidth of 450 GB/s is
only 15% of the GPU’s bandwidth. Secondly, the throughput for PQ
code scanning on GPUs is considerably lower than the GPU’s band-
width, only around 50% of the bandwidth even with large batch
sizes (evaluated on NVIDIA A100), due to the multiple passes of
memory accesses to write and read intermediate results at each
search step [40].

3 CHAMELEON: SYSTEM OVERVIEW
We design and implement Chameleon, an efficient, flexible,
and performant RALM inference system:

• Chameleon employs heterogeneous hardware to accelerate both
LLM inference and vector search efficiently.

• Chameleon disaggregates the accelerators, enabling independent
scaling for each type of hardware, thus supporting various RALM
configurations efficiently.

• The modular design of Chameleon allows flexible hardware up-
grades, such as integrating more powerful LLM inference accel-
erators or ASIC-based ChamVS accelerators in the future.
Figure 3 overviews the Chameleon architecture, which pri-

marily consists of the following components.
Firstly, ChamVS is a distributed accelerator engine for low-latency

vector search. On the one hand, ChamVS.idx is a GPU-based IVF
index scanner colocated with the ChamLM GPUs (right side of
Figure 3). While Chameleon also supports index scan on CPUs,
GPUs are generally more favorable for handling this embarrass-
ingly parallel workload due to their superior memory bandwidth
and computational capability. Given that GPUs are already inte-
grated into Chameleon, no additional devices are required. The
only overhead is a slight increase in GPU memory usage, as the
index sizes are small relative to the database vectors. For example,

DRAM

DRAM

…

TC
P/

IP

FPGA-based Disaggregated Memory Node

ChamVS
Near-Memory
Accelerator

6

GPU Process

…

Disaggregated Memory Node6

Disaggregated Memory Node6

ChamVS.mem

LLM

1 10

…

IVF Index

2

1 10 GPU Process2

3

Vector IDs
to Tokens

Task
Collection

GPU Coord.
Process

Result
Aggregation

Task
Broadcast

FPGA Coord.
Process

CPU Server

ChamLM + ChamVS.idx

4

7

8

9

5

1 10 GPU Process2

 query vector generation1 2 IVF index scan distance evaluation & K-selection6

7 K-results per node 8 aggregated K results 9 tokens respective to the K results

3 queries and selected IVF list IDs4 5

10 LLM inference with retrieved tokens

5

5

7

7

3

3

9

9

User’s prompts

Figure 3: Chameleon is a heterogeneous and disaggregated accelerator system for efficient RALM inference.

assuming 1KB per vector and one thousand vectors per IVF list,
a single GB of index can support one million IVF lists, enough
for a large database containing one billion vectors. On the other
hand, ChamVS.mem is responsible for querying quantized data-
base vectors. ChamVS.mem contains one or multiple disaggregated
memory nodes, each with a partition of the database vectors and a
near-memory retrieval accelerator prototyped on FPGA for query
processing (left side of Figure 3).

Secondly, ChamLM is amulti-GPU LLM inference engine, as shown
on the right side of Figure 3. Each GPU, managed by an independent
GPU process, can reside on the same or different servers. Currently,
ChamLM assigns each GPU a full copy of the LLM, as RALMs can
achieve high generation quality even with smaller LLMs [7, 49]. Fu-
ture larger models could be accommodated by extending ChamLM
to support tensor or pipeline parallelism [59, 69, 73] across GPUs.
Once a retrieval request is sent, a GPU pauses inference to wait
for results. While one potential solution to avoid such GPU idle-
ness is to split the generation into two sub-batches — one executes
inference when the other one is waiting for retrieved contents —
this approach does not necessarily improve performance. This is
because (a) using sub-batches reduces inference throughput, and
(b) retrieval latency may not align with inference latency.

Thirdly, the CPU serves as the cluster coordinator, managing the
lightweight communication between the GPUs and FPGAs. After re-
ceiving search requests from the GPU processes, it dispatches them
to the FPGA-based disaggregated memory nodes, aggregates the
per-partition results returned by the FPGAs, converts the K nearest
neighbor vector IDs into their corresponding texts, and sends the
retrieved tokens back to the GPUs. Since each query only requires
less than ten KBs of network data transfer, the communication
latency is negligible compared to vector search and LLM inference.

Token generation workflow. For each token generation step,
the procedure diverges depending on whether the retrieval is in-
voked. Without retrieval, the GPUs infer the next token as in regu-
lar LLMs. With retrieval, the first step is to generate a contextual
query vector 1 , either by using the hidden state of the current
context [41, 42] or encoding the query tokens through another
model [7]. Following this, the IVF index residing on the same GPU
is scanned to select the 𝑛𝑝𝑟𝑜𝑏𝑒 most relevant IVF lists 2 . The query

ChamVS Near-Memory Accelerator

N
et

w
or

k
DRAM

Channel

FPGA
Board

DRAM
Channel

TC
P/

IP
 N

et
w

or
k

St
ac

k

M
em

or
y

C
on

tro
lle

r

Le
ve

l-2
 P

rio
rit

y
Q

ue
ue

Dist. Lookup Table Construct

…

PQ Decode
Level-1 Queue

Level-1 Queue

PQ Decode
Level-1 Queue

Level-1 Queue

PQ Decode
Level-1 Queue

Level-1 Queue

……

DRAM
Channel

Fe
tc

h
Re

su
lt

Ve
ct

or
 ID

s

1
2

3
45

6

7

4

Figure 4: The ChamVS near-memory retrieval accelerator.

vector and the list IDs are then transmitted to the GPU coordina-
tor process running on the CPU node via the network 3 . After
recording the association between queries and GPU IDs, the query
and list IDs are forwarded to the FPGA coordination process 4 ,
which broadcasts them to the FPGA-based disaggregated memory
nodes 5 . The ChamVS near-memory processor on each node then
uses the query vectors to construct distance lookup tables for each
IVF list, computes the distances between the query and quantized
database vectors, and collects the K nearest neighbors 6 . Subse-
quently, the result vector IDs and distances from all memory nodes
are sent back to the CPU server 7 , which aggregates the results 8

and returns the tokens of the nearest neighbors to the originating
GPU 9 . Finally, the GPU predicts the next token based on both the
context and the retrieved tokens 10 .

4 CHAMVS NEAR-MEMORY ACCELERATOR
ChamVS enables high-performance, large-scale vector search by
pairing each disaggregated memory node with a near-memory re-
trieval accelerator. As shown in Figure 4, the accelerator comprises
a distance lookup table construction unit, several PQ decoding
units for distance evaluations between query vectors and quantized
database vectors, a group of systolic priority queues for parallel
𝐾-selection, and multiple memory channels.

4.1 PQ Decoding Units
As shown in Figure 4 3 , each ChamVS accelerator containsmultiple
PQ decoding units to fully utilize the memory bandwidth. These

BR
AM

 0

BR
AM

 1

BR
AM

 2

BR
AM

 m
-2

BR
AM

 m
-1

…

C0 C1 C2 Cm-2 Cm-1…

+ + +
+

+

Result distance

…

m-byte PQ codes

…

0 7.2
addr dist.

1 3.4
2 6.8

…

254 4.6
255 5.3

One column of the
distance lookup table Output FIFO

Input FIFO

Figure 5: The architecture design of a PQ decoding unit.

units read database vectors (PQ codes) from DRAM and compute
their distances to query vectors using a distance lookup table.

The design of a PQ decoding unit involves both operator
and pipeline parallelisms, enabling a high throughput of
producing one result distance every clock cycle. As shown in
Figure 5, the decoding steps — including data ingestion, distance
lookups, computation, and output egestion — are fully pipelined,
similar to that of [38, 45]. The unit also parallelizes the operators
within the distance lookup and computation steps.

Decoding procedure. For each IVF list to scan, the unit first stores
the input distance lookup table in BRAM (on-chip SRAM in FPGAs).
The shape of the lookup table is𝑚 × 256 for the typical 8-bit PQ
codes (28 = 256), where𝑚 is the number of bytes per quantized
vector. Different table columns are stored in separate BRAM slices,
facilitating parallel distance lookups. Subsequently, the PQ codes
are loaded from DRAM to the unit via an𝑚-byte-wide FIFO, with
each byte serving as an address to retrieve a value from the corre-
sponding column of the table. Finally, an adder tree sums up the
retrieved values to produce the approximate distance between the
query vector and the quantized database vector.

4.2 Efficient 𝐾-Selection Module
The𝐾-Selection module in ChamVS selects the𝐾 nearest neighbors
from distances computed by the PQ decoding units. Designing an
efficient 𝐾-selection microarchitecture is challenging, because it
has to handle multiple incoming elements per cycle due to the
high throughput of PQ decoding units. We propose approximate
hierarchical priority queue (AHPQ), a high-throughput, resource-
efficient architecture for parallel 𝐾-selection in hardware.

4.2.1 Primitive: Systolic PriorityQueue. The systolic priority queue
facilitates high-throughput input ingestion on hardware acceler-
ators [29, 46], consuming one input element every two clock cycles.
In short, it is a register array equipped with compare-swap units
between the registers, thus the hardware resource consumption of
the queue increases linearly with its length.

A natural approach to implement 𝐾-selection in ChamVS is to
instantiate a group of systolic priority queues in a hierarchical
structure, as shown in Figure 4 4 5 . Since a systolic priority queue
can only ingest one input every two cycles, two queues, termed
as level-one (L1) queues, should be paired with one PQ decoding
unit, as it can produce one output per cycle. For each query, each L1
queue collects a subset of the𝐾 nearest neighbors, and the level-two
(L2) queue subsequently selects the final 𝐾 results.

0 20 40 60 80 100
0.0

0.1

p(
k)

 in
 b

ar
s

0

1

P(
k)

 in
 c

ur
ve

Given many L1 priority queues, it is unlikely that
more than 20 of the results appear in the same L1 queue

Figure 6: The probability distribution that one out of the 16
L1 priority queues holds k out of the 100 nearest neighbors.

5 10 15 20 25 30
Number of L1 queues

0
25
50
75

100

M
in

 le
ng

th
pe

r L
1

qu
eu

e

AHPQ can save 10X hardware resources
given there are many queues

Figure 7: The proposed approximate hierarchical priority
queue can save hardware resources by an order ofmagnitude.

Unfortunately, a straightforward implementation of the hierar-
chical priority queue can consume excessive hardware resources,
making the solution unaffordable even on high-end FPGAs. For
example, given 32 instantiated PQ decoding units and 𝐾 = 100, the
accelerator would necessitate 64 L1 queues of length 100, an amount
that already exceeds the total the total available FPGA resources.

4.2.2 Approximate Hierarchical Priority Queue (AHPQ). We pro-
pose the AHPQ architecture for high-performance and
resource-efficient 𝐾-selection. Recognizing that ANN search
is inherently approximate, we relax the 𝐾-selection objective from
selecting the 𝐾 smallest distances in all queries to collecting precise
results in the vast majority of cases, such as in 99% of the queries.

The intuition behind AHPQ is simple: it is unlikely that all
𝐾 results are produced by a single PQ decoding unit. For exam-
ple, given 16 level-one queues of length 𝐾=100, the average num-
ber of the results in a queue is only 100/16 = 6.25. Specifi-
cally, the probability that one queue holds 𝑘 of the 𝐾 results is
𝑝 (𝑘) = 𝐶𝑘

𝐾
∗ (1

𝑛𝑢𝑚𝑞𝑢𝑒𝑢𝑒
)𝑘 ∗ (1 − 1

𝑛𝑢𝑚𝑞𝑢𝑒𝑢𝑒
)𝐾−𝑘 , where 𝐶𝑘

𝐾
repre-

sents the number of combinations selecting 𝑘 out of 𝐾 items. The
cumulative probability that a queue contains no more than 𝑘 of
the 𝐾 results is 𝑃 (𝑘) = ∑𝑘

𝑖=0 𝑝 (𝑖). Figure 6 shows the probability
distribution of 𝑝 and 𝑃 given different 𝑘 in bars and curve: it is
almost impossible that a queue holds more than 20 out of the K=100
results. Thus, the lengths of the L1 queues can be truncated to 20
while producing almost the same results.

Our design aims to reduce the size of the L1 queues while en-
suring that the results for 99% of queries remain identical to those
obtained with an exact 𝐾-selection module. Specifically, for 99%
of the queries, none of the L1 queues will omit any result that is
supposed to be returned to the user.

Figure 7 shows the resource savings achieved by applying the ap-
proximate hierarchical priority queue. As the number of L1 queues
increases, the queue sizes can be reduced by an order of magnitude
while still retaining 99% of identical results, leading to a correspond-
ing decrease in hardware resource consumption.

4.3 Memory Management and Load Balancing
The memory management mechanism of ChamVS balances work-
loads across memory nodes and channels. In our current implemen-
tation, vectors within each IVF list are evenly partitioned among
memory nodes, with these sub-lists further distributed across mem-
ory channels to ensure workload balance. For potential scenarios
where IVF lists are too small to be partitioned, each list may reside

on different nodes or channels, which could lead to load imbalances,
especially with small query batches. Such imbalances can be miti-
gated by larger batches, as it is less likely that all queries happen to
hit the same node or channel. Additionally, for the case of uneven
access frequencies across IVF lists, adjusting their placement based
on these frequencies can help achieve better load balancing [9].

5 IMPLEMENTATION
Chameleon is implemented in 11K lines of code, including 3K lines
of Vitis HLS C/C++ for the ChamVS near-memory accelerator, 1.4K
lines of C++ for the CPU coordinator, 3.5K lines of Python for
ChamLM, and 3.2K lines of Python for various evaluations. Re-
ferring to existing RALM research [41, 42], we build ChamLM on
Fairseq [60], a PyTorch-based LLM toolkit. ChamLMextends Fairseq
to support multi-GPU inference, initiating retrieval requests, inte-
grating the retrieved tokens into generation processes, and network
communication between the retrieval engines and GPU processes.
ChamVS.idx uses Faiss [40] for index scanning on GPUs or CPUs.
ChamVS.mem integrates an FPGA TCP/IP stack [25]. The CPU co-
ordinator process for query broadcasting and result aggregation is
implemented in C++ using the socket library. The simple messages
in RALMs allow us to avoid higher-level abstractions like RPCs,
minimizing performance overhead.

6 EVALUATION
We evaluate Chameleon to answer the following questions:

• How much performance and energy benefits can ChamVS attain
in large-scale vector search? § 6.2

• How does Chameleon perform across different RALMs by intro-
ducing heterogeneous accelerators? § 6.3

• Is accelerator disaggregation necessary? § 6.3

6.1 Experimental Setup
LLMs. We evaluate RALM models of similar sizes to those in exist-
ing RALM research [7, 31, 51, 72, 86], up to several billions of pa-
rameters. We evaluate both smaller (S) and larger (L) decoder-only
(Dec) and encoder-decoder (EncDec) models. Table 1 summarizes
the four RALMs for evaluation, including input dimensionalities,
numbers of layers and attention heads, model sizes, retrieval in-
tervals, and neighbor numbers. For EncDec models, we follow [7]
to use a two-layer shallow encoder and a deeper decoder, and set
different retrieval intervals. For all the models, we use a vocabulary
size of 50K and let them generate 512 tokens per sequence.

Vector datasets. Table 2 summarizes the four evaluated vector
datasets. The SIFT and Deep datasets are popular benchmarks for
billion-scale ANN. Due to the lack of available datasets for RALM,
we create two synthetic datasets by replicating each SIFT vector to
the models’ dimensionalities (512 and 1024). As a common practice,
we set 𝑛𝑙𝑖𝑠𝑡 , the number of clusters in the IVF index, to approxi-
mately the square root of the number of dataset vectors (nlist=32K).
We set 𝑛𝑝𝑟𝑜𝑏𝑒 as 32 to scan 0.1% of database vectors per query, for
which high recall can be achieved on both real-world datasets (93%
on Deep and 94% on SIFT for 100 nearest neighbors). We quantize
the SIFT and Deep datasets to 16-byte PQ codes, while the two
synthetic datasets adopt 32 and 64-byte PQ codes, respectively.

Table 1: Various RALM configurations in the evaluation.

Dim. Layers Heads Param. Interval 𝐾

Dec-S 512 24 8 101M 1 100
Dec-L 1024 96 16 1259M 1 100
EncDec-S 512 2,24 8 158M 8/64/512 10
EncDec-L 1024 2,96 16 1738M 8/64/512 10

Table 2: The vector datasets used in the evaluation.

Deep SIFT SYN-512 SYN-1024

#vec 1E+9 1E+9 1E+9 1E+9
𝑚/𝐷 16/96 16/128 32/512 64/1,024
nprobe/nlist 32/32K 32/32K 32/32K 32/32K
Raw vectors (GB) 384 512 2,048 4,096
PQ and vec IDs (GB) 24 24 40 72

Software. For vector search, we use Faiss [1] developed by Meta,
known for its optimized PQ implementations for both CPUs and
GPUs. Due to its vector-only nature, Faiss’s ANN search perfor-
mance surpasses vector data management systems that support
additional relational data functionalities [62]. For LLM inference,
we extend Fairseq [60] to support RALMs as introduced in §5.

Hardware. We instantiate the ChamVS near-memory accelera-
tor on AMD Alveo U250 FPGAs (16 nm) equipped with 64 GB of
DDR4 memory (4 channels x 16 GB) and set the accelerator fre-
quency to 140 MHz. For a fair comparison, each ChamVS memory
node is compared to a CPU-based vector search system with equiv-
alent memory capacity (64 GB) and an 8-core AMD EPYC 7313
processor (7 nm) with a base frequency of 3.0 GHz. We evaluate
NVIDIA RTX 3090 GPUs (8nm) with 24 GB GDDR6X memory.

6.2 Large-Scale Vector Search on ChamVS
Search performance. We compare ChamVS with baseline sys-
tems using four hardware setups. PQ codes can be processed on
CPU/FPGA while the IVF index can be scanned on CPU/GPU, lead-
ing to four hardware configurations: CPU, CPU-GPU, FPGA-CPU,
and FPGA-GPU. To report the best baseline performance, the CPU
and CPU-GPU systems are monolithic, while the FPGA-CPU and
FPGA-GPU systems are disaggregated over the network. Figure 8
compares the latency distributions of the four solutions. Each white
dot in the violin plots denotes a median latency. The number of
CPU cores and the number of accelerators used are listed in the plot
legends. We make two primary observations from the experiments:

Firstly, the near-memory accelerator in ChamVS significantly low-
ers vector search latency. Across different datasets and batch sizes
(Figure 8), the FPGA-CPU solution achieves 1.36∼6.13× speedup
compared to the CPU baseline, and the FPGA-GPU solution shows
even higher speedup (2.25∼23.72×). This is because the ChamVS
near memory accelerator can (a) decode PQ codes in parallel, (b)
pipeline the decoding, distance calculation, and K-selection, such
that each quantized vector can be processed by the pipeline rapidly.

Secondly, scanning the IVF index on GPU allows further latency
improvements compared to the FPGA-CPU solution. As shown in
Figure 8, the FPGA-GPU approach achieves 1.04∼3.87× speedup
compared to the FPGA-CPU solution. This is because the IVF index
scan procedure can easily leverage the massively parallelism and
the high memory bandwidth of GPUs. In contrast, the hybrid CPU-
GPU solution shows little or even negative improvements compared

1 4 16 64
Batch size

100

101

102

La
te

nc
y

(m
s) Dataset: Deep

8CPU
8CPU-1GPU

1FPGA-8CPU
1FPGA-1GPU (Ours)

1 4 16 64
Batch size

101

102

La
te

nc
y

(m
s) Dataset: SIFT

8CPU
8CPU-1GPU

1FPGA-8CPU
1FPGA-1GPU (Ours)

1 4 16 64
Batch size

101

102

La
te

nc
y

(m
s) Dataset: SYN-512

8CPU
8CPU-1GPU

1FPGA-8CPU
1FPGA-1GPU (Ours)

1 4 16 64
Batch size

101

102

La
te

nc
y

(m
s) Dataset: SYN-1024

16CPU
16CPU-1GPU

2FPGA-8CPU
2FPGA-1GPU (Ours)

Figure 8: ChamVS achieves significantly lower vector search latency than CPUs and GPUs.

1 2 4 8 16 32 64 128
Number of FPGA-based Disaggregated Memory Nodes

0

50

100

La
te

nc
y

(m
s)

Dataset: SYN-512 Close median and 99th latency (b = 1)

median, b=1, incr=54.5%
median, b=64, incr=7.9%

99th, b=1, incr=2.8%
99th, b=64, incr=0.1%

Figure 9: The performance scalability of ChamVS.
Table 3: Average energy consumption per query (in mJ) on
ChamVS and CPUs using various batch sizes (1∼16).

CPU ChamVS (FPGA + GPU)

b=1 b=4 b=16 b=1 b=4 b=16

SIFT 950.3 434.0 143.3 53.6 28.2 21.5
Deep 929.5 412.9 141.9 52.3 26.9 20.5
SYN-512 1734.9 957.8 372.5 95.6 55.0 41.1
SYN-1024 4459.9 2315.0 918.5 170.1 107.8 85.2

to the CPU-only solution (0.91∼1.42×), because the search perfor-
mance is limited by the slow PQ code scan process on CPU.

Scalability. We extrapolate query latency beyond the limited
number of accelerators available in our evaluation. Considering the
one-GPU and 𝑁 -FPGA setup, we estimate the latency distribution
by summing up accelerator and network latencies. Each query
latency number is the maximum of 𝑁 randomly sampled latency
numbers from the 1-FPGA setup. For network latency, we assume
a 100 Gbps bandwidth for the CPU server and apply the LogGP
model [5, 13], which assumes a tree topology for broadcast and
reduce communications, setting the latency between two endpoints
as 10.0 𝜇s (a conservative number compared to 6.0 𝜇s reported
in [26, 27]). Figure 9 presents the median and the 99th percentile
latencies for different batch sizes on the SYN-512 dataset. The tail
latencies remain almost identical to those in the one-node setup
due to the negligible network latency compared to the query. As for
the median latencies, there is only a 7.9% increase for a batch size
of 64, while for the case without batching, the latency increases by
54.5% as the accelerator latency is determined by the slowest one.

Energy consumption. ChamVS achieves 5.8∼26.2× energy effi-
ciency compared to the CPU. Table 3 summarizes the average energy
consumption to serve a single query across different systems. We
measure CPU, GPU, and FPGA energy consumption using Running
Average Power Limit (RAPL) and NVIDIA System Management
Interface, and Vivado, respectively. For ChamVS, we report the
energy per query by measuring the power consumption times la-
tency for scanning index on GPU and scanning PQ codes on FPGAs,
respectively, and summing the two parts up.

Recall. ChamVS, with approximate hierarchical priority queues
(AHPQ), delivers results nearly identical to those of the software. Ta-
ble 4 shows the recall given various AHPQ lengths (8∼32) when
searching for the 𝐾 = 100 nearest neighbors. Here, R1@100 in-
dicates the percentage of queries where the top nearest neighbor
is within the results, while R@100 represents the percentage of

Table 4: Recall of ChamVS using approximate queues.

CPU (len=100) AHPQ (len=8) AHPQ (len=16) AHPQ (len=32)

R1@100 (Deep) 92.88% 92.85% 92.84% 92.84%
R@100 (Deep) 45.54% 45.49% 45.49% 45.48%
R1@100 (SIFT) 94.21% 94.20% 94.21% 94.21%
R@100 (SIFT) 48.68% 48.66% 48.67% 48.67%

overlap between the true 100 nearest neighbors and the 100 results
returned. Compared to software, AHPQ only decreases recall by
up to 0.06%. Interestingly, on the Deep dataset, reducing the queue
lengths to eight does not necessarily result in lower recall than
using a length of 32. This is likely due to the nature of PQ approxi-
mation — a higher distance indicated by PQ does not always mean
that the original vector is actually farther from the query.

6.3 End-to-end RALM Inference on Chameleon
We evaluate RALM inference performance on Chameleon with
different models and retrieval intervals, using the SYN-512 and
SYN-1024 datasets for the smaller and larger models, respectively.

RALM performance.We evaluate system performance when
generating a 512-token sequence using a single GPU for LLM in-
ference .For the latency evaluation, we disable batching, while the
throughput evaluation uses the maximum allowed batch sizes given
the GPU’s memory capacity (64 for Dec-S and EncDec-S; 8 for Dec-L
and EncDec-L). For vector search in RALM, we use the FPGA-GPU
solution for ChamVS and the CPU-only solution as the baseline, as
CPU-GPU vector search can be even slower using small batches.

Chameleon significantly outperforms the CPU-GPU baseline sys-
tem in latency for inference steps involving vector search. Figure 10
visualizes the RALM inference latency of Chameleon and the base-
line system (CPU-GPU) for the first 128 generated tokens. Inference
latency is represented by the grey dots, while retrieval latency ac-
counts for the remaining portion of the end-to-end latency. The
time spent on coordinator and index scanning is not marked in the
figure, as their latencies of hundreds of microseconds are negligible
compared to up to tens of milliseconds for inference and retrieval.
Figure 10 shows that ChamVS significantly reduces the latency at
the token generation steps requiring retrieval, as the retrieval la-
tency of Chameleon is almost negligible compared to the inference
latency executed on GPUs. Specifically, the speedup provided by
Chameleon at retrieval-based inference steps (retrieval + inference)
ranges from 1.94∼4.11×, 1.71∼3.02×, 1.76∼3.41×, and 1.29∼2.13×
for Dec-S, EncDec-S, Dec-L, and EncDec-L, respectively.

Chameleon achieves up to 3.18× throughput compared to the CPU-
GPU baseline. Figure 11 shows that the lower the retrieval interval,
themore throughput advantage Chameleon offers, with the speedup
being 3.18× and 2.34× for Dec-S and Dec-L that require retrieval per
token generation (interval=1). Chameleon attains greater speedup
in batched inference than single-sequence inference (as in latency

Figure 10: Latency of RALM inference given different LLM
configurations and retrieval intervals.

Dec-S
Interv.=1

EncDec-S
Interv.=8

EncDec-S
Interv.=64

EncDec-S
Interv.=512

0

2000

4000

Th
ro

ug
hp

ut
(to

ke
ns

 /
se

c)

8CPU-1GPU 1FPGA-1GPU (Ours)

Dec-L
Interv.=1

EncDec-L
Interv.=8

EncDec-L
Interv.=64

EncDec-L
Interv.=512

0

50

100

150

Th
ro

ug
hp

ut
(to

ke
ns

 /
se

c)

16CPU-1GPU 2FPGA-1GPU (Ours)

Figure 11: Throughput of RALM inference given different
LLM configurations and retrieval intervals.

experiments), because, as the batch size grows, the latency increase
for LLM inference is not as significant as that of vector search, due
to the many-core parallelism that GPUs offer.

The need for resource disaggregation. Accelerator disag-
gregation allows Chameleon to adjust the ratio between the two
types of accelerators across RALM configurations. We model the
overall system throughput, measured by generated tokens per sec-
ond, across various accelerator ratios using a total of 1,000 ac-
celerators, assuming the cost for an inference accelerator and a
retrieval accelerator is equivalent. Given retrieval interval 𝑖 , batch
size 𝑏, number of inference and retrieval accelerators 𝑁𝐼 and 𝑁𝑅 ,
latency per batch for inference and retrieval 𝐿𝐼 (𝑏) and 𝐿𝑅 (𝑏), the
system throughput is determined by the minimum of the infer-
ence and retrieval throughput: 𝑇ℎ𝑠𝑦𝑠𝑡𝑒𝑚 = min(𝑇ℎ𝐼 ,𝑇ℎ𝑅), where
𝑇ℎ𝐼 =

𝑖 ·𝑏 ·𝑁𝐼

𝑖 ·𝐿𝐼 (𝑏)+𝐿𝑅 (𝑏) and 𝑇ℎ𝑅 =
𝑖 ·𝑏 ·𝑁𝑅

𝐿𝑅 (𝑏) . Figure 12 shows that the
optimal ratio of accelerators to achieve the highest throughput
varies significantly, ranging from 53.7%∼99.0% across RALMs.

The disaggregated design, using the optimal accelerator ratio, con-
sistently outperforms the monolithic ones with fixed ratios, as shown
in Figure 13. Given the impracticality of adjusting the ratio for each
RALM in a monolithic design, the performance of a monolithic de-
sign can only match that of Chameleon on a limited set of RALMs.

7 RELATEDWORK
To our knowledge, Chameleon represents the first endeavor to
improve RALM inference performance by using heterogeneous ac-
celerator systems. We now introduce related research topics below.

ANN search. Researchers have developed various ANN search
algorithms [14, 19, 30, 36, 54, 61, 75, 78, 84, 92, 93] and data manage-
ment systems [22, 58, 62, 77, 79, 85]. Apart from PQ-based vector
search, graph-based searching algorithms [17, 18, 53, 55, 56, 65, 81,

Dec-S
interv.=1

EncDec-S
interv.=8

EncDec-S
interv.=64

Dec-L
interv.=1

EncDec-L
interv.=8

EncDec-L
interv.=64

0
25
50
75

100

Op
tim

al
 ra

tio
 (%

)

53
.7

%

77
.1

%

94
.1

% 64
.0

%

93
.8

%

99
.0

%

Number of FPGAs Number of GPUs

Figure 12: Disaggregation is essential as the optimal acceler-
ator ratio varies significantly across RALM configurations.

Dec-S
interv.=1

EncDec-S
interv.=8

EncDec-S
interv.=64

0

1

2

Th
ro

ug
hp

ut
(to

ke
ns

/s
)

1e6

Disaggregated (optimal ratio)
Monolithic (FPGA:GPU=4:1)

Monolithic (FPGA:GPU=1:1)
Monolithic (FPGA:GPU=1:4)

Dec-L
interv.=1

EncDec-L
interv.=8

EncDec-L
interv.=64

0.0

0.5

1.0

Th
ro

ug
hp

ut
(to

ke
ns

/s
)

1e5

Figure 13: The disaggregated design consistently outperforms
the monolithic ones using fixed accelerator ratios.

91, 94] are popular as they can achieve high recall and low latency.
Locality-sensitive hashing (LSH) [15, 21] offers theoretical guaran-
tees in ANN search but empirically does not perform as well as PQ
and graph-based algorithms.

Vector search on modern hardware. Faiss is the most popular
GPU-accelerated ANN search library so far [40], and there are sev-
eral academic GPU implementations [10, 11, 52, 80]. Lee et al. [45]
study ASIC designs for IVF-PQ, and a couple of works [38, 89] im-
plement IVF-PQ on an FPGA, but their designs are constrained by
either the limited HBM capacity or the slow CPU-FPGA intercon-
nect. In contrast, Chameleon disaggregates IVF-PQ, with the index
on GPUs and PQ codes on FPGA-based memory nodes, and employs
the innovative hardware priority queue design to achieve high per-
formance with little hardware resources. While graph-based vector
search accelerators can achieve low latency [37, 88], the memory
consumption is high, requiring up to one TB of memory for only
one billion SIFT vectors, in contrast to 24 GB in our case. Apart from
accelerators, researchers also study memory and storage for vector
search. One can leverage non-volatile memory [71] and CXL [33]
to scale up graph-based ANN, while on-disk ANN has to be more
careful with I/O cost [9, 34, 47]. Hu et al. [28] further push down
distance evaluation into NAND flash to reduce data movement.

8 CONCLUSION AND OUTLOOK
We present Chameleon, a heterogeneous and disaggregated acceler-
ator system for efficient RALM inference. Given the rapidly evolving
algorithms, software, and hardware related to RALMs, Chameleon
can be potentially upgraded in the following ways. For LLM infer-
ence, ChamLM could be enhanced by supporting low precision [2],
continuous batching [87], paged-attention [44], and disaggregated
prompt computation and token generation [63]. While currently
supporting PQ, ChamVS could potentially be replaced by graph-
based ANN accelerators [64, 88]. ChamVS could also be extended
to support index updates [83] and relational features [90].

ACKNOWLEDGMENTS
We thank AMD for their generous donation of the Heteroge-
neous Accelerated Compute Clusters (HACC) at ETH Zurich
(https://systems.ethz.ch/research/data-processing-on-modern-
hardware/hacc.html), on which the experiments were conducted.

https://systems.ethz.ch/research/data-processing-on-modern-hardware/hacc.html
https://systems.ethz.ch/research/data-processing-on-modern-hardware/hacc.html

REFERENCES
[1] [n.d.]. Faiss. https://github.com/facebookresearch/faiss/.
[2] [n.d.]. FasterTransformer. https://github.com/NVIDIA/FasterTransformer.
[3] [n.d.]. The Implications of OpenAI’s Latest Update on RAG and Vector-Only

Databases. https://medium.com/@vishalkalia.er/the-implications-of-openais-
latest-update-on-rag-and-vector-only-databases-c3f326cce0a1.

[4] [n.d.]. What does OpenAI’s announcement mean for Re-
trieval Augmented Generation (RAG) and Vector-only Databases?
https://medium.com/madhukarkumar/what-does-openais-announcement-
mean-for-retrieval-augmented-generation-rag-and-vector-only-54bfc34cba2c.

[5] Albert Alexandrov, Mihai F Ionescu, Klaus E Schauser, and Chris Scheiman.
1995. LogGP: Incorporating long messages into the LogP model—one step closer
towards a realistic model for parallel computation. In Proceedings of the seventh
annual ACM symposium on Parallel algorithms and architectures. 95–105.

[6] Uri Alon, Frank Xu, Junxian He, Sudipta Sengupta, Dan Roth, and Graham
Neubig. 2022. Neuro-symbolic language modeling with automaton-augmented
retrieval. In International Conference on Machine Learning. PMLR, 468–485.

[7] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Ruther-
ford, Katie Millican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bog-
dan Damoc, Aidan Clark, et al. 2022. Improving language models by retrieving
from trillions of tokens. In International conference on machine learning. PMLR,
2206–2240.

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[9] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li,
Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-efficient Billion-scale
Approximate Nearest Neighbor Search. arXiv preprint arXiv:2111.08566 (2021).

[10] Wei Chen, Jincai Chen, Fuhao Zou, Yuan-Fang Li, Ping Lu, Qiang Wang, and
Wei Zhao. 2019. Vector and line quantization for billion-scale similarity search
on GPUs. Future Generation Computer Systems 99 (2019), 295–307.

[11] Wei Chen, Jincai Chen, Fuhao Zou, Yuan-Fang Li, Ping Lu, and Wei Zhao. 2019.
Robustiq: A robust ann search method for billion-scale similarity search on gpus.
In Proceedings of the 2019 on International Conference on Multimedia Retrieval.
132–140.

[12] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2022. Palm: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311 (2022).

[13] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,
Eunice Santos, Ramesh Subramonian, and Thorsten Von Eicken. 1993. LogP:
Towards a realistic model of parallel computation. In Proceedings of the fourth
ACM SIGPLAN symposium on Principles and practice of parallel programming.
1–12.

[14] Michele Dallachiesa, Themis Palpanas, and Ihab F Ilyas. 2014. Top-k nearest
neighbor search in uncertain data series. Proceedings of the VLDB Endowment 8,
1 (2014), 13–24.

[15] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab SMirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry. 253–262.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[17] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2017. Fast approximate
nearest neighbor search with the navigating spreading-out graph. arXiv preprint
arXiv:1707.00143 (2017).

[18] Jianyang Gao and Cheng Long. 2023. High-dimensional approximate nearest
neighbor search: with reliable and efficient distance comparison operations.
Proceedings of the ACM on Management of Data 1, 2 (2023), 1–27.

[19] Jianyang Gao and Cheng Long. 2024. RaBitQ: Quantizing High-Dimensional
Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor
Search. Proceedings of the ACM on Management of Data 2, 3 (2024), 1–27.

[20] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product
quantization. IEEE transactions on pattern analysis and machine intelligence 36, 4
(2013), 744–755.

[21] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in
high dimensions via hashing. In Vldb, Vol. 99. 518–529.

[22] Rentong Guo, Xiaofan Luan, Long Xiang, Xiao Yan, Xiaomeng Yi, Jigao Luo,
Qianya Cheng, Weizhi Xu, Jiarui Luo, Frank Liu, et al. 2022. Manu: A Cloud
Native Vector Database Management System. arXiv preprint arXiv:2206.13843
(2022).

[23] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang.
2020. Retrieval augmented language model pre-training. In International confer-
ence on machine learning. PMLR, 3929–3938.

[24] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang.
2020. Realm: Retrieval-augmented language model pre-training. arXiv preprint

arXiv:2002.08909 (2020).
[25] Zhenhao He, Dario Korolija, and Gustavo Alonso. 2021. EasyNet: 100 Gbps

Network for HLS. In 2021 31th International Conference on Field Programmable
Logic and Applications (FPL).

[26] Torsten Hoefler, Andre Lichei, and Wolfgang Rehm. 2007. Low-overhead LogGP
parameter assessment for modern interconnection networks. In 2007 IEEE Inter-
national Parallel and Distributed Processing Symposium. IEEE, 1–8.

[27] Torsten Hoefler and Dmitry Moor. 2014. Energy, memory, and runtime tradeoffs
for implementing collective communication operations. Supercomputing frontiers
and innovations 1, 2 (2014), 58–75.

[28] Han-Wen Hu, Wei-Chen Wang, Yuan-Hao Chang, Yung-Chun Lee, Bo-Rong
Lin, Huai-Mu Wang, Yen-Po Lin, Yu-Ming Huang, Chong-Ying Lee, Tzu-Hsiang
Su, et al. 2022. ICE: An Intelligent Cognition Engine with 3D NAND-based
In-Memory Computing for Vector Similarity Search Acceleration. In 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 763–
783.

[29] Muhuan Huang, Kevin Lim, and Jason Cong. 2014. A scalable, high-performance
customized priority queue. In 2014 24th International Conference on Field Pro-
grammable Logic and Applications (FPL). IEEE, 1–4.

[30] Qiang Huang, Yifan Lei, and Anthony KH Tung. 2021. Point-to-Hyperplane
Nearest Neighbor Search Beyond the Unit Hypersphere. In Proceedings of the
2021 International Conference on Management of Data. 777–789.

[31] Gautier Izacard and Edouard Grave. 2020. Leveraging passage retrieval with
generative models for open domain question answering. arXiv preprint
arXiv:2007.01282 (2020).

[32] Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni,
Timo Schick, Jane Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard
Grave. 2022. Few-shot learning with retrieval augmented language models. arXiv
preprint arXiv:2208.03299 (2022).

[33] Junhyeok Jang, Hanjin Choi, Hanyeoreum Bae, Seungjun Lee, Miryeong Kwon,
and Myoungsoo Jung. 2023. {CXL-ANNS}:{Software-Hardware} Collaborative
Memory Disaggregation and Computation for {Billion-Scale} Approximate
Nearest Neighbor Search. In 2023 USENIX Annual Technical Conference (USENIX
ATC 23). 585–600.

[34] Suhas Jayaram Subramanya, FnuDevvrit, Harsha Vardhan Simhadri, Ravishankar
Krishnawamy, and Rohan Kadekodi. 2019. Diskann: Fast accurate billion-point
nearest neighbor search on a single node. Advances in Neural Information
Processing Systems 32 (2019).

[35] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[36] Minhao Jiang, Ada Wai-Chee Fu, and Raymond Chi-Wing Wong. 2015. Exact
top-k nearest keyword search in large networks. In Proceedings of the 2015 ACM
SIGMOD international conference on management of data. 393–404.

[37] Wenqi Jiang, Hang Hu, Torsten Hoefler, and Gustavo Alonso. 2024. Accelerat-
ing Graph-based Vector Search via Delayed-Synchronization Traversal. arXiv
preprint arXiv:2406.12385 (2024).

[38] Wenqi Jiang, Shigang Li, Yu Zhu, Johannes de Fine Licht, Zhenhao He, Runbin
Shi, Cedric Renggli, Shuai Zhang, Theodoros Rekatsinas, Torsten Hoefler, et al.
2023. Co-design Hardware and Algorithm for Vector Search. arXiv preprint
arXiv:2306.11182 (2023).

[39] Wenqi Jiang, Shuai Zhang, Boran Han, Jie Wang, Bernie Wang, and Tim Kraska.
2024. Piperag: Fast retrieval-augmented generation via algorithm-system co-
design. arXiv preprint arXiv:2403.05676 (2024).

[40] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with gpus. IEEE Transactions on Big Data (2019).

[41] Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke Zettlemoyer, and
Mike Lewis. 2020. Nearest neighbor machine translation. arXiv preprint
arXiv:2010.00710 (2020).

[42] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike
Lewis. 2019. Generalization through memorization: Nearest neighbor language
models. arXiv preprint arXiv:1911.00172 (2019).

[43] Mojtaba Komeili, Kurt Shuster, and Jason Weston. 2021. Internet-augmented
dialogue generation. arXiv preprint arXiv:2107.07566 (2021).

[44] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient
Memory Management for Large Language Model Serving with PagedAtten-
tion. In Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems
Principles.

[45] Yejin Lee, Hyunji Choi, Sunhong Min, Hyunseung Lee, Sangwon Beak, Dawoon
Jeong, Jae W Lee, and Tae Jun Ham. 2022. ANNA: Specialized Architecture for
Approximate Nearest Neighbor Search. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 169–183.

[46] Charles E Leiserson. 1979. Systolic Priority Queues. Technical Report. CARNEGIE-
MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER SCIENCE.

[47] Herwig Lejsek, Friðrik Heiðar Ásmundsson, Björn Þór Jónsson, and Laurent
Amsaleg. 2008. NV-Tree: An efficient disk-based index for approximate search
in very large high-dimensional collections. IEEE Transactions on Pattern Analysis

https://github.com/facebookresearch/faiss /
 https://github.com/NVIDIA/FasterTransformer

and Machine Intelligence 31, 5 (2008), 869–883.
[48] Mike Lewis, Marjan Ghazvininejad, Gargi Ghosh, Armen Aghajanyan, Sida

Wang, and Luke Zettlemoyer. 2020. Pre-training via paraphrasing. Advances in
Neural Information Processing Systems 33 (2020), 18470–18481.

[49] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

[50] Zihao Li. 2023. The dark side of chatgpt: Legal and ethical challenges from
stochastic parrots and hallucination. arXiv preprint arXiv:2304.14347 (2023).

[51] Zonglin Li, Ruiqi Guo, and Sanjiv Kumar. 2022. Decoupled context processing
for context augmented language modeling. Advances in Neural Information
Processing Systems 35 (2022), 21698–21710.

[52] Zihan Liu, Wentao Ni, Jingwen Leng, Yu Feng, Cong Guo, Quan Chen, Chao
Li, Minyi Guo, and Yuhao Zhu. 2023. JUNO: Optimizing High-Dimensional
Approximate Nearest Neighbour Search with Sparsity-Aware Algorithm and
Ray-Tracing Core Mapping. arXiv preprint arXiv:2312.01712 (2023).

[53] Kejing Lu, Mineichi Kudo, Chuan Xiao, and Yoshiharu Ishikawa. 2021. HVS:
hierarchical graph structure based on voronoi diagrams for solving approximate
nearest neighbor search. Proceedings of the VLDB Endowment 15, 2 (2021), 246–
258.

[54] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. 2012. Efficient processing of
k nearest neighbor joins using mapreduce. arXiv preprint arXiv:1207.0141 (2012).

[55] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.
2014. Approximate nearest neighbor algorithm based on navigable small world
graphs. Information Systems 45 (2014), 61–68.

[56] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[57] Yuxian Meng, Xiaoya Li, Xiayu Zheng, Fei Wu, Xiaofei Sun, Tianwei Zhang,
and Jiwei Li. 2021. Fast nearest neighbor machine translation. arXiv preprint
arXiv:2105.14528 (2021).

[58] Jason Mohoney, Anil Pacaci, Shihabur Rahman Chowdhury, Ali Mousavi, Ihab F
Ilyas, Umar Farooq Minhas, Jeffrey Pound, and Theodoros Rekatsinas. 2023.
High-Throughput Vector Similarity Search in Knowledge Graphs. Proceedings of
the ACM on Management of Data 1, 2 (2023), 1–25.

[59] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
PipeDream: generalized pipeline parallelism for DNN training. In Proceedings of
the 27th ACM symposium on operating systems principles. 1–15.

[60] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng,
David Grangier, and Michael Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. arXiv preprint arXiv:1904.01038 (2019).

[61] Dian Ouyang, Dong Wen, Lu Qin, Lijun Chang, Ying Zhang, and Xuemin Lin.
2020. Progressive top-k nearest neighbors search in large road networks. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 1781–1795.

[62] James Jie Pan, Jianguo Wang, and Guoliang Li. 2023. Survey of vector database
management systems. arXiv preprint arXiv:2310.14021 (2023).

[63] Pratyush Patel, Esha Choukse, Chaojie Zhang, Íñigo Goiri, Aashaka Shah, Saeed
Maleki, and Ricardo Bianchini. 2023. Splitwise: Efficient generative llm inference
using phase splitting. arXiv preprint arXiv:2311.18677 (2023).

[64] Hongwu Peng, Shiyang Chen, Zhepeng Wang, Junhuan Yang, Scott A Weitze,
Tong Geng, Ang Li, Jinbo Bi, Minghu Song, Weiwen Jiang, et al. 2021. Optimizing
fpga-based accelerator design for large-scale molecular similarity search (special
session paper). In 2021 IEEE/ACM International Conference On Computer Aided
Design (ICCAD). IEEE, 1–7.

[65] Yun Peng, Byron Choi, Tsz Nam Chan, Jianye Yang, and Jianliang Xu. 2023.
Efficient approximate nearest neighbor search in multi-dimensional databases.
Proceedings of the ACM on Management of Data 1, 1 (2023), 1–27.

[66] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAI blog 1, 8 (2019), 9.

[67] Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann,
Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young,
et al. 2021. Scaling language models: Methods, analysis & insights from training
gopher. arXiv preprint arXiv:2112.11446 (2021).

[68] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text transformer. The Journal of
Machine Learning Research 21, 1 (2020), 5485–5551.

[69] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. Zero:
Memory optimizations toward training trillion parameter models. In SC20: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 1–16.

[70] Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin
Leyton-Brown, and Yoav Shoham. 2023. In-context retrieval-augmented language

models. arXiv preprint arXiv:2302.00083 (2023).
[71] Jie Ren, Minjia Zhang, and Dong Li. 2020. Hm-ann: Efficient billion-point nearest

neighbor search on heterogeneous memory. Advances in Neural Information
Processing Systems 33 (2020), 10672–10684.

[72] Devendra Singh Sachan, Mostofa Patwary, Mohammad Shoeybi, Neel Kant,
Wei Ping, William L Hamilton, and Bryan Catanzaro. 2021. End-to-end train-
ing of neural retrievers for open-domain question answering. arXiv preprint
arXiv:2101.00408 (2021).

[73] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter
language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).

[74] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam
Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay
Korthikanti, et al. 2022. Using deepspeed and megatron to train megatron-turing
nlg 530b, a large-scale generative languagemodel. arXiv preprint arXiv:2201.11990
(2022).

[75] Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and Xuemin Lin. 2014. SRS:
solving c-approximate nearest neighbor queries in high dimensional euclidean
space with a tiny index. Proceedings of the VLDB Endowment (2014).

[76] Boxin Wang, Wei Ping, Lawrence McAfee, Peng Xu, Bo Li, Mohammad Shoeybi,
and Bryan Catanzaro. 2023. Instructretro: Instruction tuning post retrieval-
augmented pretraining. arXiv preprint arXiv:2310.07713 (2023).

[77] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus:
A purpose-built vector data management system. In Proceedings of the 2021
International Conference on Management of Data. 2614–2627.

[78] XiaoyangWang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Muhammad Aamir
Cheema. 2015. Optimal spatial dominance: an effective search of nearest neighbor
candidates. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. 923–938.

[79] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. AnalyticDB-V: a hybrid analytical engine towards query
fusion for structured and unstructured data. Proceedings of the VLDB Endowment
13, 12 (2020), 3152–3165.

[80] Patrick Wieschollek, Oliver Wang, Alexander Sorkine-Hornung, and Hendrik
Lensch. 2016. Efficient large-scale approximate nearest neighbor search on
the gpu. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2027–2035.

[81] Yubao Wu, Ruoming Jin, and Xiang Zhang. 2014. Fast and unified local search
for random walk based k-nearest-neighbor query in large graphs. In Proceedings
of the 2014 ACM SIGMOD international conference on Management of Data. 1139–
1150.

[82] Frank F Xu, Uri Alon, and Graham Neubig. 2023. Why do Nearest Neighbor
Language Models Work? arXiv preprint arXiv:2301.02828 (2023).

[83] Yuming Xu, Hengyu Liang, Jin Li, Shuotao Xu, Qi Chen, Qianxi Zhang, Cheng Li,
Ziyue Yang, Fan Yang, Yuqing Yang, et al. 2023. SPFresh: Incremental In-Place
Update for Billion-Scale Vector Search. In Proceedings of the 29th Symposium on
Operating Systems Principles. 545–561.

[84] Shiyu Yang, Muhammad Aamir Cheema, Xuemin Lin, and Wei Wang. 2015.
Reverse k nearest neighbors query processing: experiments and analysis. Pro-
ceedings of the VLDB Endowment 8, 5 (2015), 605–616.

[85] Wen Yang, Tao Li, Gai Fang, and Hong Wei. 2020. Pase: Postgresql ultra-high-
dimensional approximate nearest neighbor search extension. In Proceedings of the
2020 ACM SIGMOD international conference on management of data. 2241–2253.

[86] Dani Yogatama, Cyprien de Masson d’Autume, and Lingpeng Kong. 2021. Adap-
tive semiparametric language models. Transactions of the Association for Compu-
tational Linguistics 9 (2021), 362–373.

[87] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-
Gon Chun. 2022. Orca: A distributed serving system for {Transformer-Based}
generative models. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22). 521–538.

[88] Shulin Zeng, Zhenhua Zhu, Jun Liu, Haoyu Zhang, Guohao Dai, Zixuan Zhou,
Shuangchen Li, Xuefei Ning, Yuan Xie, Huazhong Yang, et al. 2023. DF-GAS: a
Distributed FPGA-as-a-Service Architecture towards Billion-Scale Graph-based
Approximate Nearest Neighbor Search. (2023).

[89] Jialiang Zhang, Soroosh Khoram, and Jing Li. 2018. Efficient large-scale approx-
imate nearest neighbor search on OpenCL FPGA. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 4924–4932.

[90] Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai,
Yaoqi Chen, Yinxuan He, Yuqing Yang, Fan Yang, et al. 2023. {VBASE}: Unifying
Online Vector Similarity Search and Relational Queries via Relaxed Monotonicity.
In 17th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23). 377–395.

[91] Xi Zhao, Yao Tian, Kai Huang, Bolong Zheng, and Xiaofang Zhou. 2023. Towards
efficient index construction and approximate nearest neighbor search in high-
dimensional spaces. Proceedings of the VLDB Endowment 16, 8 (2023), 1979–1991.

[92] Yuxin Zheng, Qi Guo, Anthony KH Tung, and Sai Wu. 2016. Lazylsh: Approx-
imate nearest neighbor search for multiple distance functions with a single

index. In Proceedings of the 2016 International Conference on Management of Data.
2023–2037.

[93] Huaijie Zhu, Xiaochun Yang, Bin Wang, and Wang-Chien Lee. 2016. Range-
based obstructed nearest neighbor queries. In Proceedings of the 2016 International

Conference on Management of Data. 2053–2068.
[94] Chaoji Zuo and Dong Deng. 2023. ARKGraph: All-Range Approximate K-Nearest-

Neighbor Graph. Proceedings of the VLDB Endowment 16, 10 (2023), 2645–2658.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Retrieval-Augmented Language Models
	2.2 Large-Scale Vector Search
	2.3 Motivation: Efficient RALM Inference

	3 Chameleon: System Overview
	4 ChamVS Near-Memory Accelerator
	4.1 PQ Decoding Units
	4.2 Efficient K-Selection Module
	4.3 Memory Management and Load Balancing

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Large-Scale Vector Search on ChamVS
	6.3 End-to-end RALM Inference on Chameleon

	7 Related Work
	8 Conclusion and Outlook
	Acknowledgments
	References

